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Abstract: We apply the H.S.A. (Homotheticity with a Single Aggregator) class of 
demand systems to the Melitz (2003) model of monopolistic competition with 
firm heterogeneity. H.S.A., which contains CES and translog as special cases, is 
tractable due to its homotheticity and to its single aggregator that serves as a 
sufficient statistic for competitive pressures. It is also flexible enough to allow for 
the choke price, the 2nd and 3rd laws of demand. We prove the existence and 
uniqueness of the free-entry equilibrium and conduct general equilibrium 
comparative static analysis with sharp analytical results, often just by using  
simple diagrams. Because the single aggregator enters all firm-specific variables 
proportionately with the firm-specific marginal cost, thereby acting as a magnifier 
of firm heterogeneity, we are able to characterize how a change in competitive 
pressures, whether due to a change in the entry cost, market size, or in the 
overhead cost, causes reallocation across firms and selection and sorting of firms 
across markets, thereby affecting the distribution of firm-specific variables.  
Furthermore, we are able to show that, due to such a composition effect, the 
average markup (pass-through) rate may move in the opposite direction of the 
firm-level markup (pass-through) rate. 
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1.  Introduction 

How do firms with different productivity respond differently to increased competitive 

pressures caused by a lower entry cost or an increase in market size? How do these changes 

affect selection of heterogeneous firms? Or sorting of heterogeneous firms across different 

markets? And what are the impacts on the distribution of firm size, measured in revenue, profit, 

and employment, as well as the distribution of markup rates and pass-through rates? In the 

Melitz (2003) model of monopolistic competition with firm heterogeneity, its assumption of the 

CES demand system implies that all firms sell their products at an exogenous and common 

markup rate and have the pass-through rate equal to one. Thus, their markup and pass-through 

rates are unresponsive to competitive pressures. Furthermore, a change in market size has no 

effect on the distribution of the firm types and their behaviors, with all adjustments taking place 

at the extensive margin. 

In this paper, we extend the (closed economy version of) Melitz (2003) model by 

relaxing the CES assumption, thereby allowing for heterogeneous firms to set different markup 

rates, which are responsive to a change in competitive pressures. We do so by using the H.S.A. 

(Homotheticity with a Single Aggregator) class of demand systems, originally introduced by 

Matsuyama and Ushchev (2017) and first applied to monopolistic competition by Matsuyama 

and Ushchev (2022).1 The H.S.A. class of demand systems has many attractive features that 

make it suitable for the Melitz model  

First, H.S.A. is homothetic, unlike most non-CES demand systems that have been applied 

to monopolistic competition.2 Even though market size can change for a variety of reasons, such 

 
1 Recent applications of H.S.A. to monopolistic competition include Matsuyama and Ushchev (2020a, 2020b), 
Baqaee, Farhi, and Sangani (2023), Fujiwara and Matsuyama (2022), and Grossman, Helpman, and Lhuiller (2023).  
Among these, Baqaee, Farhi and Sangani (2023) is most closely related to this paper, as they also apply H.S.A. to 
the Melitz model. Two papers are highly complementary to each other. Their goal is to decompose the impact on 
TFP from a market size increase into three (procompetitive, selection, and reallocation, which they call the 
Darwinian) components and quantify their relative contributions. In contrast, our goal is to develop the Melitz model 
under H.S.A. as a building block and to offer its theoretical foundation. We establish the existence of the unique 
equilibrium. We analytically characterize the implications of departing from CES under H.S.A. on the distributions 
of firm size and markup and pass-through rates, as well as on the aggregate labor cost and profit shares. We also use 
it to propose a demand-side explanation for heterogeneous firms sorting across markets of different size in a multi-
market setting.      
2 For example, Dixit and Stiglitz (1977, Section II) extended their monopolistic competition model to the directly 
explicitly additive (DEA) demand systems, which have been further explored by Krugman (1979), Behrens and 
Murata (2007), Zhelobodko, et.al. (2012), Melitz (2018), Dhingra and Morrow (2019), Latzer, Matsuyama, and 
Parenti (2019), Behrens et.al. (2020), Kokovin et. al. (2023), among many others. This class can be also used to 
rationalize the reduced-form profit functions assumed in Mrázová-Neary (2017; 2019) and Nocke (2006). Though 
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as labor productivity growth, globalization, a sectoral shift in demand, a change in the population 

size, etc., the composition of market demand does not matter under homotheticity, which allows 

us to define a single measure of market size.3 It also helps to isolate the effects of endogenous 

markup rates from those of nonhomotheticity. Furthermore, homotheticity makes it 

straightforward to use the Melitz model under H.S.A. as a building block in multi-sector general 

equilibrium models with any intersectoral (including nonhomothetic) demand systems.   

Second, H.S.A. is flexible. It can accommodate (but does not necessitate) the choke price, 

as well as the so-called Marshall’s 2nd law of demand, “a higher price leads to a higher price 

elasticity,” which implies incomplete pass-through--less productive firms have lower markup 

rates--, and what we call the 3rd law of demand, “a higher price leads to a smaller rate of change 

in the price elasticity,” which implies that less productive firms have higher pass-through rates,4 

for which there is some supporting empirical evidence.5 Furthermore, since this class contains 

CES (as well as translog) as a special case, H.S.A. can be used to perform the robustness check; 

it helps us understand which properties of the original Melitz model carry over to a broader class 

of the demand system.6 

 
Dixit and Stiglitz called this class, “Variable Elasticity Case,” the well-known Bergson’s Law states that, within this 
class of demand systems, they are homothetic if and only if they are CES. In other words, any departure from CES 
within this class introduces nonhomotheticity. The linear-quadratic demand system introduced by Ottaviano, 
Tabuchi, and Thisse, (2002) and applied to the Melitz model by Melitz and Ottaviano (2008) is also nonhomothetic. 
See Thisse and Ushchev (2018) for a survey of monopolistic competition with non-CES demand systems. Parenti, 
Ushchev and Thisse (2017) provides a unified treatment of this literature. Matsuyama (2023) offers a broader 
overview of non-CES demand systems.  
3Using the linear-quadratic demand system with the outside good, Melitz and Ottaviano (2008) studied the market 
size effect by changing the population size. Many of the comparative statics go in the opposite directions, if the 
market size effect is studied by changing the per capita expenditure with a shock to the weight attached to the 
outside good in the preferences. Also under DEA, how firms respond to a market size change depends on whether it 
is caused by a change in the population size or by a change in the per capita expenditure. 
4 Regarding the terminology, Marshall’s 1st law of demand states that a higher price reduces demand; it imposes the 
restriction on the 1st derivative of the demand curve. Marshall’s 2nd law states that a higher price increases the price 
elasticity; it imposes the restriction on the 2nd derivative. We call the law stating that a higher price reduces the rate 
of change in the price elasticity as the 3rd law because it imposes the restriction on the 3rd derivative.  
5 For the empirical evidence on the 2nd law and incomplete pass-through, as well as the closely related concepts of 
the procompetitive effect and strategic complementarity in pricing, see Campbell and Hopenhayn (2005); Burstein-
Gopinath (2014), DeLoecker and Goldberg (2014), Feenstra and Weinstein (2017), and Amiti, Itskhoki, and 
Konings (2019); For the empirical evidence on the 3rd law, see Berman, Martin, and Mayer (2012) and Amiti, 
Itskhoki, and Konings (2014). Recently, Baqaee, Farhi, and Sangani (2023) nonparametrically calibrated H.S.A. 
using the firm-level data from Belgium in support of the 2nd and the 3rd laws. 
6 In contrast, translog, applied to monopolistic competition by Feenstra (2003) and others, imposes the 2nd law, while 
violating the 3rd law. It is also an isolated example and hence cannot be used as a tool for the robustness check for 
CES. This motivated Matsuyama and Ushchev (2020a, 2022) to develop Generalized Translog, a family within 
H.S.A. that nests both CES and translog. See Appendix D.1.    
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Third, the Melitz model under H.S.A. retains much of the tractability of the original 

Melitz model under CES. This is due to its single aggregator property; that is the market share of 

each firm is a function of one variable, its own price normalized by the single price aggregator, 

which serves as a sufficient statistic for capturing any change in competitive pressures, whether 

caused by a change in the mass of active firms or by a change in the prices of competing 

products. Furthermore, due to its homotheticity, the single aggregator enters all firm-specific 

variables (the markup and pass-through rates, the profit, the revenue and the employment) 

proportionately with the firm’s marginal cost, so that competitive pressures act as a magnifier of 

firm heterogeneity. This allows us to take advantage of log-supermodularity7 to study the 

differential impacts of competitive pressures on heterogeneous firms. It also enables us to use 

simple diagrams to prove the existence and uniqueness of free-entry equilibrium with firm 

heterogeneity8 and to conduct most comparative statics, which generate sharp analytical results 

without imposing any parametric restrictions on the demand system and productivity 

distribution. Moreover, unlike Melitz and Ottaviano (2008) and Arkolakis et.al. (2019) and many 

others that introduce the procompetitive effect in the Melitz model, there is no need to assume 

zero overhead cost for tractability. This is important not only because it makes the Melitz model 

under H.S.A. applicable also to the sectors characterized by high overhead costs, but also 

because it allows us to study the effects of the recent rise in overhead costs.  Indeed, a 

combination of firm heterogeneity and the 2nd and 3rd laws of demand generates some new 

insights when the overhead cost is sufficiently high.9 

Here are the main findings on the Melitz model under H.S.A. 

 
7 See, for example, Costinot (2009) and Costinot and Vogel (2010; 2015).  
8 In contrast, under the two other classes of demand systems studied in Matsuyama and Ushchev (2020a), HDIA, 
which contains the Kimball (1995) demand system as a special case, and HIIA, we need the two aggregators, one for 
competitive pressures due to a change in the pricing of competing firms, and another for competitive pressures due 
to a change in the mass of firms. This poses a challenge for ensuring the existence and the uniqueness of the free-
entry equilibrium and for conducting comparative statics exercises even in a single-market setting, since it would 
require further restrictions on the firm productivity distribution and the demand system. (Matsuyama and Ushchev 
(2020a) found the condition of the existence and the uniqueness under HDIA and HIIA only for the case of 
homogeneous firms.) The problem of ensuring the existence and the uniqueness under HDIA and HIIA would be 
even more challenging in a multi-market setting, which we develop in section 6 to study sorting of firms across 
markets. Generally, H.S.A. is more analytically tractable than HDIA and HIIA, when one needs to compare across 
the equilibriums in which different sets of firms are active.        
9 Another advantage of H.S.A., pointed out by Kasahara and Sugita (2020), is that the market share (in revenue) 
functions are the primitive of H.S.A., hence it can be readily identified with the typical firm-level data, which 
contain revenue, but not the output. 
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• More productive firms, which always have higher profits and revenues, have higher markup 

rates under the 2nd law and lower pass-through rates under the 3rd law. Employments are not 

monotone in firm productivity; they are hump-shaped under the 2nd and 3rd laws. The 2nd law 

also implies the procompetitive effect and strategic complementarity in pricing. 

• A lower entry cost leads to more competitive pressures, which reduces the markup rates of all 

firms under the 2nd law and raises the pass-through rates of all firms under the 3rd law. The 

profits of all firms decline (at faster rates among less productive firms under the 2nd law), 

which leads to a tougher selection. The revenues of all firms also decline (at faster rates 

among less productive firms under the 3rd law). A lower overhead cost has similar effects 

when the employment is decreasing in firm productivity, which occurs under the 2nd and the 

3rd laws for a sufficiently high overhead cost. 

• Larger market size also leads to more competitive pressures, reducing the markup rates of all 

firms under the 2nd law and raises the pass-through rates of all firms under the 3rd law. The 

profits among more productive firms increase, while those among less productive decline 

under the 2nd law, which leads to a tougher selection. The revenues among more productive 

firms also increase, while those among less productive decline under the 3rd law at least when 

the overhead cost is not too large. 

• An increase in competitive pressures due to a lower entry cost and a larger market size may 

lead to an increase in the (revenue-, profit- or employment-) weighted generalized (including 

arithmetic, geometric, and harmonic) mean of the firm-level markup rates under the 2nd law, 

despite that each surviving firm reduces its markup rate. This also means that the aggregate 

profit share increases due to more competitive pressures; they may also lead to a decline in 

the weighted generalized mean of the firm-level pass-through rate under the 3rd law, despite 

that each surviving firm increases its pass-through rate. This is because they cause less 

productive firms with lower markup rates and higher pass-through rates to shrink and to exit, 

changing the composition of firms. This composition effect dominates the effect on 

individual firms when the elasticity of marginal cost density is an increasing function, as 

found empirically in the calibration by Baqaee, Farhi and Sangani (2023), but not when it is a 

decreasing function (as in Fréchet, Weibull, and Lognormal), with the Pareto distribution 

being the knife-edge case. This suggests that a rise of the markup and a decline in the pass-

through rate may occur due to more competitive pressures through reallocation from less 
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productive firms to more productive firms. Hence they should not be interpreted as the 

prima-facie evidence for reduced competitive pressures.  

• The impacts on the masses of entrants and of active firms depend, often critically, on whether 

the elasticity of the distribution of the marginal cost is increasing or decreasing with Pareto-

distributed productivity being the knife-edge case. 

• In a multi-market setting, competitive pressures are stronger in larger markets. And more 

productive firms sort themselves into larger markets under the 2nd Law. Due to this 

composition effect, the weighted-generalized mean of the markup (pass-through) rates can be 

higher (lower under the 3rd Law) in larger (thus more competitive) markets. This result 

suggests a caution when interpreting the evidence that compares the average markup and 

pass-through rates across markets with different sizes. 

Here's the roadmap. In section 2, we formally introduce the H.S.A. class of demand 

systems and apply it to the (closed economy version of) Melitz model. We show, under some 

mild regularity conditions, that the markup and pass-through rates of firms with the marginal 

cost 𝜓𝜓 can be expressed as 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) and 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ), both differentiable functions of a single 

variable, 𝜓𝜓 𝐴𝐴⁄ , the firm’s “normalized cost”, where 𝐴𝐴 is the inverse measure of competitive 

pressures; it is the equilibrium value of the single aggregator, which serves a sufficient statistic 

that captures all the equilibrium interactions across firms, and hence higher competitive 

pressures, a lower 𝐴𝐴, act as a magnifier of firm heterogeneity. We also show that the profit, the 

revenue, and the employment of a 𝜓𝜓-firm can be expressed as 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 and 

ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, all differentiable functions of 𝜓𝜓 𝐴𝐴⁄ , multiplied by market size 𝐿𝐿. Then, we derive the 

equilibrium conditions in terms of 𝐴𝐴 and the cutoff marginal cost, 𝜓𝜓𝑐𝑐 and show that the 

equilibrium is uniquely determined (Figure 1) as a differentiable function of 𝐹𝐹𝑒𝑒 𝐿𝐿⁄  and 𝐹𝐹 𝐿𝐿⁄ , 

where 𝐹𝐹𝑒𝑒 is the entry cost and 𝐹𝐹 the overhead cost.   

In section 3, we revisit the Melitz model under CES, which implies constant markup rate 

𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) = 𝜇𝜇 > 1 and complete pass-through, 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) = 1. We offer a simpler proof of the 

existence of the unique equilibrium (Figure 2) and a reproduction of the well-known results; We 

also show that the sign of the elasticity of the marginal cost distribution determines comparative 

statics on the masses of the entrance and active firms, with Pareto-distributed firm productivity 

being the knife-edge case (Proposition 1). 
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Then, we depart from CES. In section 4, we consider the cross-sectional implications of 

more competitive pressures (a lower 𝐴𝐴) under the 2nd law, i.e., when 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) is strictly 

decreasing (Proposition 2), and under the weak or strong 3rd law, i.e., when 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is weakly or 

strictly increasing (Propositions 3, 4, and 5). These results are summarized in Figure 3. In section 

5, we conduct general equilibrium analysis to study the impacts of changes in 𝐹𝐹𝑒𝑒, 𝐿𝐿 and 𝐹𝐹 on 

competitive pressures, 𝐴𝐴, and selection, 𝜓𝜓𝑐𝑐 (Proposition 6; Figure 4). We look at the market size 

effect on the profit and the revenue (Proposition 7). Figure 5 puts together these results. Then, 

we study how the average markup and pass-through rates, measured by the weighted generalized 

mean, change through the composition effect (Proposition 8) and discuss the impact on TFP as a 

Corollary of Proposition 8 and the effects on the masses of the entrants and active firms 

(Proposition 9). At the end of section 5, we look at the limit case of no overhead cost, where the 

cutoff firms operate at the choke price (Figure 6).  In this case, all the equilibrium values can be 

expressed as a function 𝐹𝐹 𝐿𝐿⁄ , so that the impact of an increase in market size is isomorphic to that 

of a decline in the entry cost.    

Then, in section 6, we consider a multi-market extension, in which each firm, after 

learning its productivity, decides whether to stay or exit and, if it stays, chooses among markets 

with different sizes. We show that larger markets are more competitive and that, under the 2nd 

law, there is a positive assortative matching between firm productivity and market size 

(Proposition 10; Figure 7). Then, we show the cross-sectional implications across markets 

(Figure 8). Due to the composition effect, the average markup (pass-through) rate, measured by 

the weighted-generalized mean, may be higher (lower) in larger markets, and a shock that 

increases competitive pressures in all markets may lead to higher average markup rates and 

lower average pass-through rates in all markets in spite of the 2nd law and the 3rd law 

(Proposition 11). 

We conclude in Section 7. Appendices A through C contain some technical materials, 

including the proofs of some lemmas and propositions. Appendix D discuss three parametric 

families of H.S.A. and discuss their key properties. 

 

2.  Selection of Heterogeneous Firms 

2.1.  A Single-Market Setting 
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The representative household inelastically supplies 𝐿𝐿 units of labor, the only primary 

factor of production, which we take as the numeraire, and consumes 𝑋𝑋 units of the single final 

good subject to the budget constraint, 𝑃𝑃𝑃𝑃 = 𝐿𝐿, where 𝑃𝑃 is the price of the final good.10 The final 

good is produced competitively by assembling a set of differentiated intermediate inputs using 

CRS technology, which can be represented by the linear homogenous, monotone, and quasi-

concave, production function, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱). Here, 𝐱𝐱 = {𝑥𝑥𝜔𝜔;𝜔𝜔 ∈ Ω} is a quantity vector of 

intermediate inputs where Ω denotes a set of intermediate input varieties available, indexed by 𝜔𝜔. 

Alternatively, the CRS technology can also be represented by the linear homogenous, monotone, 

and quasi-concave, unit cost function, 𝑃𝑃 = 𝑃𝑃(𝐩𝐩), where 𝐩𝐩 = {𝑝𝑝𝜔𝜔;𝜔𝜔 ∈ Ω} is a price vector of the 

intermediate inputs. The duality theory tells us that the production function, 𝑋𝑋(𝐱𝐱), and the unit 

cost function, 𝑃𝑃(𝐩𝐩), can be derived from each other as follows: 

𝑋𝑋(𝐱𝐱) ≡ min
𝐩𝐩
�𝐩𝐩𝐩𝐩 = ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑃𝑃(𝐩𝐩) ≥ 1� ;   𝑃𝑃(𝐩𝐩) ≡ min

𝐱𝐱
�𝐩𝐩𝐩𝐩 = ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑋𝑋(𝐱𝐱) ≥ 1� 

Hence, one could use either 𝑃𝑃(𝐩𝐩) or 𝑋𝑋(𝐱𝐱) as a primitive of the CRS technology. The solutions to 

the above minimization problems yield the demand curve and the inverse demand curve:   

𝑥𝑥𝜔𝜔 = 𝑋𝑋(𝐱𝐱)
𝜕𝜕𝜕𝜕(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

;  𝑝𝑝𝜔𝜔 = 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝜕𝜕(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

 

for each intermediate input variety 𝜔𝜔. From either of these, we can show, by using the Euler’s 

theorem of linear homogenous functions,  

𝐩𝐩𝐩𝐩 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝑃𝑃𝑃𝑃 = 𝐿𝐿. 

Market size for the intermediate inputs is thus equal to the aggregate income.11 The market share 

of each variety, 𝑠𝑠𝜔𝜔, can be expressed as 
 

𝑠𝑠𝜔𝜔 ≡
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐩𝐩𝐩𝐩

=
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

=
𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

. 
(1) 

 

2.2.  Symmetric H.S.A. Demand System with Gross Substitutes  

Melitz (2003) assumed that the production function, 𝑋𝑋(𝐱𝐱), and its corresponding unit cost 

function, 𝑃𝑃(𝐩𝐩), is given by symmetric CES with gross substitutes. In Matsuyama and Ushchev 

(2017, section 3), we studied a class of homothetic functions that we called Homothetic with a 

 
10 This budget constraint anticipates that monopolistic competitive firms collectively earn zero net profit in 
equilibrium due to the free-entry and hence the representative household receive no dividend income. 
11 This is due to the one-market setting. In a multi-market setting later, size of each market differs from 𝐿𝐿.  
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Single Aggregator (H.S.A.), and in Matsuyama and Ushchev (2020a, 2022, 2023), we restrict 

this class further by defining over a continuum of varieties and imposing the symmetry and gross 

substitutability in order to make it applicable to monopolistic competitive settings.  

More specifically, a symmetric CRS technology belongs to H.S.A. if it generates the 

demand system for inputs such that the market share of each input, eq.(1), can also be written as 
 

𝑠𝑠𝜔𝜔 =
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)

�, 
(2) 

where 𝑠𝑠:ℝ++ → ℝ+ is the market share function, which is strictly decreasing as long as 𝑠𝑠(𝑧𝑧) >

0 with lim𝑧𝑧→𝑧̅𝑧𝑠𝑠(𝑧𝑧) = 0, where 𝑧𝑧̅ ≡ inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0},12 and 𝐴𝐴(𝐩𝐩) is linear homogenous in 𝐩𝐩, 

defined implicitly by the adding-up constraint, 
 

� 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)

� 𝑑𝑑𝑑𝑑
Ω

 ≡ 1, 
(3) 

which ensures, by construction, that the market shares of all inputs are added up to one.13  

Symmetric CES with gross substitutes is a special case of H.S.A, with 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 (𝜎𝜎 > 1).  

Symmetric translog is another special case, with 𝑠𝑠(𝑧𝑧) = max{−𝛾𝛾 ln(𝑧𝑧 𝑧𝑧̅⁄ ) , 0}.14  Appendix D 

offers more parametric examples of symmetric H.S.A. 

 Eqs.(2)-(3) state that the market share of an input is decreasing in its normalized price, 

𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ , defined as its own price, 𝑝𝑝𝜔𝜔 , divided by the common price aggregator, 𝐴𝐴(𝐩𝐩). 

Notice that 𝐴𝐴(𝐩𝐩) is independent of 𝜔𝜔; it is “the average input price” against which the prices of 

all inputs are measured. In other words, one could keep track of all the cross-price effects in the 

 
12 We need to ensure that the pass-through rate function defined later 𝜌𝜌(∙) is continuous, for which it suffices to 
assume 𝑠𝑠(∙) ∈ 𝐶𝐶2(0, 𝑧𝑧̅). However, some of the proofs are much simpler if 𝜌𝜌(∙) is continuously differentiable. Only 
for this expositional reason, we assume 𝑠𝑠(∙) ∈ 𝐶𝐶3(0, 𝑧𝑧̅) in this paper. All the parametric examples in this paper 
satisfy 𝑠𝑠(∙) ∈ 𝐶𝐶∞(0, 𝑧𝑧̅). Matsuyama and Ushchev (2022; Appendix A) discusses how the analysis of monopolistic 
competition under H.S.A. might need to be modified if 𝑠𝑠(∙) is piecewise 𝐶𝐶2(0, 𝑧𝑧̅), i.e., if it has some kinks. 
13For 𝐴𝐴(𝐩𝐩) to be well-defined for all 𝐩𝐩 = {𝑝𝑝𝜔𝜔;𝜔𝜔 ∈ Ω} for any Lebesgue measure of Ω, it is necessary to assume 
lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞. Though satisfied by CES and translog, this assumption would rule out some properties of the 
demand system we want to explore. Instead, we assume that 𝐿𝐿 is not too small to ensure that there will be enough 
firms to enter in equilibrium so that 𝐴𝐴(𝐩𝐩) will be well-defined, as will be seen later. 
14For 𝑠𝑠:ℝ++ → ℝ+, satisfying the above conditions, a class of the market share functions, 𝑠𝑠𝛾𝛾(𝑧𝑧) ≡ 𝛾𝛾𝛾𝛾(𝑧𝑧) for 𝛾𝛾 > 0, 
generate the same demand system with the same common price aggregator. We just need to renormalize the indices 
of varieties, as 𝜔𝜔′ = 𝛾𝛾𝛾𝛾, so that ∫ 𝑠𝑠𝛾𝛾(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝑑𝑑Ω  = ∫ 𝑠𝑠(𝑝𝑝𝜔𝜔′ 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝜔𝜔′

Ω = 1.  In this sense, 𝑠𝑠𝛾𝛾(𝑧𝑧) ≡ 𝛾𝛾𝛾𝛾(𝑧𝑧) for 
𝛾𝛾 > 0 are all equivalent. Note also that a class of the market share functions, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝜆𝜆) for 𝜆𝜆 > 0, generate the 
same demand system, with 𝐴𝐴𝜆𝜆(𝐩𝐩) = 𝜆𝜆𝜆𝜆(𝐩𝐩), because 𝑠𝑠𝜆𝜆(𝑝𝑝𝜔𝜔 𝐴𝐴𝜆𝜆(𝐩𝐩)⁄ ) = 𝑠𝑠(𝜆𝜆 𝑝𝑝𝜔𝜔 𝐴𝐴𝜆𝜆(𝐩𝐩)⁄ ) = 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ).  In this 
sense, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝜆𝜆) for 𝜆𝜆 > 0 are all equivalent. Using these equivalences, for example, one could obtain the CES 
case with 𝑠𝑠(𝑧𝑧) = 𝑧𝑧1−𝜎𝜎 (𝜎𝜎 > 1) by setting 𝛾𝛾 = 1 and the translog case, with 𝑠𝑠(𝑧𝑧) = max{− ln(𝑧𝑧) , 0} by setting 𝛾𝛾 =
1 and 𝜆𝜆 = 1 𝑧𝑧̅ = 1,⁄  without loss of generality. 
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demand system by looking at a single aggregator, 𝐴𝐴(𝐩𝐩), which is the key feature of H.S.A.15 The 

assumption that 𝑠𝑠(∙) is strictly decreasing in 𝑧𝑧 < 𝑧𝑧̅ means that inputs are gross substitutes, 

because the price elasticity of demand for each input is: 16 

−
𝜕𝜕 ln 𝑥𝑥𝜔𝜔
𝜕𝜕 ln𝑝𝑝𝜔𝜔

= 1 −
𝑑𝑑 ln 𝑠𝑠(𝑧𝑧𝜔𝜔)
𝑑𝑑 ln 𝑧𝑧𝜔𝜔

≡ 1 − ℰ𝑠𝑠(𝑧𝑧𝜔𝜔) ≡ 𝜁𝜁(𝑧𝑧𝜔𝜔) > 1, 

where the price elasticity function, 𝜁𝜁(∙) ∈ 𝐶𝐶2(0, 𝑧𝑧̅), satisfies lim𝑧𝑧→𝑧̅𝑧𝜁𝜁(𝑧𝑧) = ∞, if 𝑧𝑧̅ < ∞.17 

Furthermore, if 𝑧𝑧̅ < ∞, 𝑧𝑧̅𝐴𝐴(𝐩𝐩) is the choke price, at which demand for a variety goes to zero.  

The unit cost function, 𝑃𝑃(𝐩𝐩), behind this H.S.A. demand system can be obtained by 

integrating eq.(2), which yields  

 𝐴𝐴(𝐩𝐩)
𝑐𝑐𝑐𝑐(𝐩𝐩) = exp �� � �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉
𝑧̅𝑧

𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄

� 𝑑𝑑𝑑𝑑
Ω

� ≡ exp �� 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�Φ�

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω

�, 
(4) 

where 𝑐𝑐 is a positive constant, proportional to TFP 18 and 

Φ(𝑧𝑧) ≡
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉
𝑧̅𝑧

𝑧𝑧

> 0, 

which captures the productivity gain from having a variety available at the normalized price 𝑧𝑧, 

and thus can be interpreted as the measure of love-for-variety (see Matsuyama and Ushchev 

2023). The unit cost function, 𝑃𝑃(𝐩𝐩), satisfies the linear homogeneity, monotonicity, and strict 

quasi-concavity in the interior, and so does the corresponding production function, 𝑋𝑋(𝐱𝐱). This 

follows from Matsuyama and Ushchev (2017; Proposition 1-i)) and guarantees the integrability 

of the H.S.A. demand system; that is, the existence of the underlying CRS technology, 𝑋𝑋(𝐱𝐱) or 

𝑃𝑃(𝐩𝐩), that generates this H.S.A. demand system. Note that, with the sole exception of CES, 
 

15 The assumption that the market share function, 𝑠𝑠(∙), is independent of 𝜔𝜔 is not a defining feature of H.S.A.; it is 
due to the symmetry of the underlying production function that generates this demand system. 
16 For a differentiable positive-valued function 𝑓𝑓(𝑥𝑥) > 0 of a single variable 𝑥𝑥 > 0, we make frequent use of “the 
elasticity operator,” ℰ𝑓𝑓(𝑥𝑥) ≡ 𝑑𝑑 ln𝑓𝑓(𝑥𝑥) 𝑑𝑑 ln 𝑥𝑥⁄ = 𝑥𝑥𝑓𝑓′(𝑥𝑥) 𝑓𝑓(𝑥𝑥)⁄ . Clearly, this operator satisfies the following 
properties: ℰ𝑐𝑐(𝑥𝑥) = 0 and ℰ𝑐𝑐𝑐𝑐(𝑥𝑥) = ℰ𝑓𝑓(𝑥𝑥) for any constant 𝑐𝑐 > 0; ℰ𝑥𝑥(𝑥𝑥) = 1 for the identity function 𝑥𝑥 > 0; 
ℰ𝑓𝑓1𝑓𝑓2(𝑥𝑥) = ℰ𝑓𝑓1(𝑥𝑥) + ℰ𝑓𝑓2(𝑥𝑥) for the product; ℰ1/𝑓𝑓(𝑥𝑥) = −ℰ𝑓𝑓(𝑥𝑥) for the inverse; and the chain rule, ℰ𝑓𝑓1∘𝑓𝑓2(𝑥𝑥) =
ℰ𝑓𝑓1(𝑓𝑓2(𝑥𝑥))ℰ𝑓𝑓2(𝑥𝑥), for the composite (𝑓𝑓1 ∘ 𝑓𝑓2)(𝑥𝑥) ≡ 𝑓𝑓1�𝑓𝑓2(𝑥𝑥)�. 
17Conversely, starting from any price elasticity function satisfying 𝜁𝜁(𝑧𝑧) > 1 and lim𝑧𝑧→𝑧̅𝑧𝜁𝜁(𝑧𝑧) = ∞, if 𝑧𝑧̅ < ∞, the 
market share function can be derived as 𝑠𝑠(𝑧𝑧) = exp �∫ [1 − 𝜁𝜁(𝜉𝜉)]𝑑𝑑𝑑𝑑 𝜉𝜉⁄𝑧𝑧

𝑧𝑧0
�, where 𝑧𝑧0 ∈ (0, 𝑧𝑧̅) is a constant. 

18The constant term in eq.(4), which appears by integrating eq.(2), cannot be pinned down. First, 𝐴𝐴(𝐩𝐩), the “average 
input price”, depends on. the unit of measurement of inputs, but not on the unit of measurement of the final good. In 
contrast, 𝑃𝑃(𝐩𝐩) is the cost of producing one unit of the final good, when the input prices are given by 𝐩𝐩. Hence, it 
depends not only on the unit of measurement of inputs but also on that of the final good. Second, a change in TFP, 
though it affects 𝑃𝑃(𝐩𝐩), leaves the market share, and hence 𝐴𝐴(𝐩𝐩), unaffected.  
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𝐴𝐴(𝐩𝐩) 𝑃𝑃(𝐩𝐩)⁄  is not constant and depends on 𝐩𝐩.  This can be verified by differentiating eq.(3) to 

obtain  

𝜕𝜕 ln𝐴𝐴(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

=
𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)

∫ 𝑠𝑠′(𝑧𝑧𝜔𝜔′)𝑧𝑧𝜔𝜔′𝑑𝑑𝜔𝜔′
Ω

=
[𝜁𝜁(𝑧𝑧𝜔𝜔) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔)

∫ [𝜁𝜁(𝑧𝑧𝜔𝜔′) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔′)𝑑𝑑𝜔𝜔′
Ω

, 

which differs from  

𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

= 𝑠𝑠(𝑧𝑧𝜔𝜔), 

unless 𝜁𝜁(𝑧𝑧) > 1 is independent of 𝑧𝑧; i.e., 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 ⇔ 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 with 𝜎𝜎 > 1.19 This should 

not come as a surprise. After all, 𝐴𝐴(𝐩𝐩) is the “average input price”, the inverse measure of 

competitive pressures for each input, which captures the cross-price effects in the demand 

system, while 𝑃𝑃(𝐩𝐩) is the inverse measure of TFP, which captures the productivity (or welfare) 

effects of price changes. And eq.(4) shows that the ratio of the two, 𝐴𝐴(𝐩𝐩) 𝑃𝑃(𝐩𝐩)⁄ , depends on the 

weighted sum of Φ(𝑧𝑧𝜔𝜔), a measure of love-for-variety, which is not constant unless CES. Thus 

there is no reason to think a priori that 𝐴𝐴(𝐩𝐩) and 𝑃𝑃(𝐩𝐩) should move together. 

 

2.3. Monopolistically Competitive Differentiated Intermediate Inputs Producers 

2.3.1. Timing  

Differentiated intermediate inputs 𝜔𝜔 ∈ Ω are produced in a monopolistically competitive 

industry a la Melitz, using labor (the numeraire) as the sole input, with the following timing. 

• First, a continuum of ex-ante homogeneous monopolistically competitive firms, each 

identified by the input variety it produces and hence indexed by 𝜔𝜔, decides whether to enter 

the industry. Every entrant pays a sunk entry cost 𝐹𝐹𝑒𝑒 > 0, paid in labor. 

• Second, each entrant draws its constant marginal cost 𝜓𝜓 ∼ 𝐺𝐺(𝜓𝜓), paid in labor, where 𝐺𝐺(𝜓𝜓) 

is a cdf, whose support is �𝜓𝜓,𝜓𝜓� ⊆ (0,∞). Thus, firms become ex-post heterogeneous in 

their marginal costs of production.20 We assume that 𝐺𝐺(𝜓𝜓) ∈ 𝐶𝐶3 �𝜓𝜓,𝜓𝜓� and hence that its 

 
19See Matsuyama and Ushchev (2020a; Corollary 2 of Lemma 2). This holds more generally, that is, for asymmetric 
H.S.A., as well as H.S.A. with gross complements, as shown in Matsuyama and Ushchev (2017; Proposition 1-iii). 
20Equivalently, each entrant draws its labor productivity, 𝜑𝜑 = 1 𝜓𝜓⁄ , from its cdf, 𝐹𝐹(𝜑𝜑) = 1 − 𝐺𝐺(1 𝜑𝜑⁄ ), whose 
support is 𝜑𝜑 ∈ �𝜑𝜑,𝜑𝜑� ⊆ (0,∞), with 𝜑𝜑 = 1 𝜓𝜓⁄  and 𝜑𝜑 = 1 𝜓𝜓� . See Appendix A for more detail on the relations 
between the two cdfs, 𝐹𝐹(∙) and 𝐺𝐺(∙), and between their densities. 
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pdf, 𝑔𝑔(𝜓𝜓) ≡ 𝐺𝐺′(𝜓𝜓) ∈ 𝐶𝐶2 �𝜓𝜓,𝜓𝜓�, which ensures that ℰ𝐺𝐺(𝜓𝜓) ≡ 𝜓𝜓𝜓𝜓(𝜓𝜓) 𝐺𝐺(𝜓𝜓)⁄  ∈ 𝐶𝐶2 �𝜓𝜓,𝜓𝜓� 

and ℰ𝑔𝑔(𝜓𝜓) ≡ 𝜓𝜓𝑔𝑔′(𝜓𝜓) 𝑔𝑔(𝜓𝜓)⁄ ∈ 𝐶𝐶1 �𝜓𝜓,𝜓𝜓� . 20F

21 

• After learning its constant marginal cost, 𝜓𝜓, each entrant chooses whether to exit without 

producing or stay and produce, in which case it pays an overhead cost 𝐹𝐹 > 0. The set of 

firms that choose to stay and hence the set of intermediate input varieties produced is 

endogenously determined and denoted by Ω.  

• Finally, each firm that chooses to stay sells its product at the profit-maximizing price. 

 

2.3.2.  Markup Rate and Pass-Through Rate Functions 

After drawing its marginal cost, 𝜓𝜓𝜔𝜔, firm 𝜔𝜔 would set its price 𝑝𝑝𝜔𝜔 to maximize its 

operating profit, if it would stay, as follows: 

Π𝜔𝜔 = max
𝑝𝑝𝜔𝜔

(𝑝𝑝𝜔𝜔 − 𝜓𝜓𝜔𝜔)𝑥𝑥𝜔𝜔 = max
𝜓𝜓𝜔𝜔<𝑝𝑝𝜔𝜔<𝑧̅𝑧𝐴𝐴

�1 −
𝜓𝜓𝜔𝜔
𝑝𝑝𝜔𝜔
� 𝑠𝑠 �

𝑝𝑝𝜔𝜔
𝐴𝐴
�𝐿𝐿, 

for its normalized cost, 𝜓𝜓𝜔𝜔 𝐴𝐴⁄  ∈ (0, 𝑧𝑧̅), by taking 𝐿𝐿 and 𝐴𝐴 as given.22 Or equivalently, it chooses 

its normalized price, 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴⁄  < 𝑧𝑧̅, to solve  

max
𝜓𝜓𝜔𝜔 𝐴𝐴⁄ <𝑧𝑧𝜔𝜔<𝑧̅𝑧

�1 −
𝜓𝜓𝜔𝜔 𝐴𝐴⁄
𝑧𝑧𝜔𝜔

� 𝑠𝑠(𝑧𝑧𝜔𝜔) ≡ 𝜋𝜋 �
𝜓𝜓𝜔𝜔
𝐴𝐴
� > 0. 

 The FOC is given by 

𝑧𝑧𝜔𝜔 �1 −
1

𝜁𝜁(𝑧𝑧𝜔𝜔)� =
𝜓𝜓𝜔𝜔
𝐴𝐴

, 

with 𝜓𝜓𝜔𝜔 𝐴𝐴⁄ < 𝑧𝑧𝜔𝜔 < 𝑧𝑧̅, where we recall 𝜁𝜁(𝑧𝑧) ≡ 1 − 𝑑𝑑 ln𝑠𝑠(𝑧𝑧)
𝑑𝑑 ln 𝑧𝑧

≡ 1 − ℰ𝑠𝑠(𝑧𝑧) > 1 is the price 

elasticity function, satisfying lim𝑧𝑧→𝑧̅𝑧𝜁𝜁(𝑧𝑧) = ∞, if 𝑧𝑧̅ < ∞. The markup rate is hence given by 

𝜁𝜁(𝑧𝑧𝜔𝜔) (𝜁𝜁(𝑧𝑧𝜔𝜔) − 1)⁄ . 

In what follows, we impose the following regularity condition for the ease of exposition: 

A1: For all 𝑧𝑧 ∈ (0, 𝑧𝑧̅),  

 
21We need to ensure that ℰ𝑔𝑔(∙) is continuous, for which it suffices to assume 𝐺𝐺(∙) ∈ 𝐶𝐶2(𝜓𝜓,𝜓𝜓). However, some of the 

proofs are much simpler if ℰ𝑔𝑔(∙) ∈ 𝐶𝐶1 �𝜓𝜓,𝜓𝜓�. Only for this expositional reason, we assume 𝐺𝐺(∙) ∈ 𝐶𝐶3(𝜓𝜓,𝜓𝜓) in this 

paper. All the parametric distributions discussed in this paper satisfy 𝐺𝐺(∙) ∈ 𝐶𝐶∞(𝜓𝜓,𝜓𝜓). 
22For 𝑧𝑧̅ < ∞, no firm that draws 𝜓𝜓𝜔𝜔 > 𝑧𝑧𝐴̅𝐴 would stay.  
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ℰ𝑧𝑧(𝜁𝜁−1) 𝜁𝜁⁄ (𝑧𝑧) = 1 + ℰ(𝜁𝜁−1) 𝜁𝜁⁄ (𝑧𝑧) = 1 +
𝑧𝑧𝜁𝜁′(𝑧𝑧)

[𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) = 1 −
ℰ𝜁𝜁(𝑧𝑧)
ℰ𝑠𝑠(𝑧𝑧) > 0 

⟺ ℰ𝜁𝜁 (𝜁𝜁−1)⁄ (𝑧𝑧) =
ℰ𝜁𝜁(𝑧𝑧)
ℰ𝑠𝑠(𝑧𝑧) < 1. 

⟺ ℰ𝑠𝑠 𝜁𝜁⁄ (𝑧𝑧) = ℰ𝑠𝑠(𝑧𝑧) − ℰ𝜁𝜁(𝑧𝑧) = ℰ𝑠𝑠(𝑧𝑧)�1 + ℰ(𝜁𝜁−1) 𝜁𝜁⁄ (𝑧𝑧)� = 1 − 𝜁𝜁(𝑧𝑧) − ℰ𝜁𝜁(𝑧𝑧) < 0. 

A1 expresses this regularity condition in three alternative (but equivalent) forms. First, LHS of 

FOC is strictly increasing in 𝑧𝑧 (i.e.,  ℰ𝑧𝑧(𝜁𝜁−1) 𝜁𝜁⁄ (𝑧𝑧) > 0), which means that the marginal revenue is 

strictly increasing in 𝑝𝑝𝜔𝜔 (hence strictly decreasing in 𝑥𝑥𝜔𝜔) along the demand curve. Second, the 

markup rate 𝜁𝜁(𝑧𝑧) (𝜁𝜁(𝑧𝑧) − 1)⁄  cannot go up as fast as 𝑧𝑧 (i.e., ℰ𝜁𝜁 (𝜁𝜁−1)⁄ (𝑧𝑧) < 1).  Third, that the 

price elasticity cannot go down as fast as the market share (i.e., ℰ𝜁𝜁(𝑧𝑧) > ℰ𝑠𝑠(𝑧𝑧)). Since ℰ𝑠𝑠(𝑧𝑧) <

0, A1 holds whenever the price elasticity is increasing in 𝑧𝑧 (i.e., ℰ𝜁𝜁(𝑧𝑧) > 0), hence the markup 

rate is decreasing in 𝑧𝑧 (i.e., under A2, Marshall’s 2nd Law, introduced later). A1 is also 

equivalent to the condition that the maximized profit, Π = max
𝑧𝑧

[1 − 𝜓𝜓 (𝑧𝑧𝑧𝑧)⁄ ]𝑠𝑠(𝑧𝑧)𝐿𝐿 =

[𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ ]𝐿𝐿, is strictly decreasing in 𝑧𝑧. 

Because LHS of FOC is 𝐶𝐶2 and strictly increasing in 𝑧𝑧𝜔𝜔 under A1, the inverse function 

theorem implies that the profit maximizing normalized price, 𝑧𝑧𝜔𝜔, can be written as a strictly 

increasing 𝐶𝐶2 function of the normalized cost, 𝜓𝜓𝜔𝜔 𝐴𝐴⁄ . Hence, the revenue, 𝑅𝑅𝜔𝜔 = 𝑠𝑠(𝑧𝑧𝜔𝜔)𝐿𝐿, the 

profit, Π𝜔𝜔 = 𝑠𝑠(𝑧𝑧𝜔𝜔) 𝜁𝜁(𝑧𝑧𝜔𝜔)⁄ 𝐿𝐿, can also be written as strictly decreasing 𝐶𝐶2 functions of 𝜓𝜓𝜔𝜔 𝐴𝐴⁄ . 

The employment, 𝐿𝐿𝜔𝜔 = 𝑅𝑅𝜔𝜔 − Π𝜔𝜔 = [1 − 1 𝜁𝜁(𝑧𝑧𝜔𝜔)⁄ ]𝑠𝑠(𝑧𝑧𝜔𝜔)𝐿𝐿, can also be written as a 𝐶𝐶2 function 

of 𝜓𝜓𝜔𝜔 𝐴𝐴⁄ .23  Thus, all firms sharing the same 𝜓𝜓 would set the same price and earn the same 

revenue and the same profit. Their outputs and employments are also the same. This allows us to 

index firms by their 𝜓𝜓. By denoting the profit-maximizing price of all 𝜓𝜓-firms by 𝑝𝑝𝜓𝜓 and their 

normalized price, 𝑧𝑧𝜓𝜓  ≡ 𝑝𝑝𝜓𝜓 𝐴𝐴⁄ , the FOC can now be written as: 

Lerner Formula: 
𝑧𝑧𝜓𝜓 �1 −

1
𝜁𝜁�𝑧𝑧𝜓𝜓�

� =
𝜓𝜓
𝐴𝐴

 

And the inverse function theorem allows us to solve for the profit-maximizing 𝑧𝑧𝜓𝜓 as a strictly 

increasing 𝐶𝐶2 function of 𝜓𝜓 𝐴𝐴⁄ ∈ (0, 𝑧𝑧̅): 
 

23Even without A1, the profit maximizing 𝑧𝑧𝜔𝜔 would be strictly increasing and the maximized profit Π𝜔𝜔 =
𝑠𝑠(𝑧𝑧𝜔𝜔) 𝜁𝜁(𝑧𝑧𝜔𝜔)⁄ 𝐿𝐿 would be strictly decreasing in the normalized cost 𝜓𝜓𝜔𝜔 𝐴𝐴⁄ .  However, 𝑧𝑧𝜔𝜔 would be piecewise-
continuous (i.e., it would jump up at some values of 𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ), and Π𝜔𝜔 would be piecewise-differentiable, which 
would complicate comparative static analysis. 
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Normalized Price: 𝑧𝑧𝜓𝜓 ≡
𝑝𝑝𝜓𝜓
𝐴𝐴

= 𝑍𝑍 �
𝜓𝜓
𝐴𝐴
� 

satisfying 𝜓𝜓 𝐴𝐴⁄ < 𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) < 𝑧𝑧̅ and lim
𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧

𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) = 𝑧𝑧̅.  From this, the price elasticity at the 

point of the demand curve where 𝜓𝜓-firms choose to operate and their markup rate can both be 

written as 𝐶𝐶2 function of 𝜓𝜓 𝐴𝐴⁄ ∈ (0, 𝑧𝑧̅): 

Price Elasticity: 
𝜁𝜁�𝑧𝑧𝜓𝜓� = 𝜁𝜁 �𝑍𝑍 �

𝜓𝜓
𝐴𝐴
�� ≡ 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� > 1, 

Markup Rate: 
𝜇𝜇𝜓𝜓 ≡

𝑝𝑝𝜓𝜓
𝜓𝜓

=
𝜁𝜁�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�

𝜁𝜁�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )� − 1
=

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1

≡ 𝜇𝜇 �
𝜓𝜓
𝐴𝐴
� > 1, 

and it is straightforward to verify that these two functions also satisfy these following relations  

1
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) +

1
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) = 1 ⟺ �𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� − 1� �𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� − 1� = 1 

and that their elasticities are related as:   

ℰ𝜎𝜎 �
𝜓𝜓
𝐴𝐴
� = −

ℰ𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) − 1

⇔ ℰ𝜇𝜇 �
𝜓𝜓
𝐴𝐴
� = −

ℰ𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1

 

We can also obtain, by log-differentiating the Lerner formula, the pass-through rate as a 𝐶𝐶1 

function of 𝜓𝜓 𝐴𝐴⁄ ∈ (0, 𝑧𝑧̅): 

Pass-Through Rate: 
𝜌𝜌𝜓𝜓 ≡

𝜕𝜕 ln 𝑝𝑝𝜓𝜓
𝜕𝜕 ln𝜓𝜓

= ℰ𝑍𝑍 �
𝜓𝜓
𝐴𝐴
� =

1
1 + ℰ1−1 𝜁𝜁⁄ �𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�

≡ 𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� > 0, 

where 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) > 0 is ensured by A1. It is also straightforward to show that 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is related to 

the elasticities of 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) and 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) as: 

−
ℰ𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1
= ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� = −ℰ1−1 𝜁𝜁⁄ �𝑍𝑍 �

𝜓𝜓
𝐴𝐴
��  𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� = 𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� − 1. 

It should be noted that, although 𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) is always strictly increasing in 𝜓𝜓 𝐴𝐴⁄ , 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) and 

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) can be increasing, decreasing, or nonmonotonic at this level of generality. Note also that 

market size, 𝐿𝐿, does not enter directly in 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) and 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ), which means that market size 

may affect the markup and pass-through rates only indirectly through its effect on 𝐴𝐴. 

2.3.3.  Profit, Revenue and Employment Functions 
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The revenue, the (gross) profit and the (variable) employment are all expressed as 

functions of a single variable, 𝜓𝜓 𝐴𝐴⁄ , multiplied by market size, 𝐿𝐿, as follows:24 

Revenue:  𝑅𝑅𝜓𝜓 ≡ 𝑠𝑠�𝑧𝑧𝜓𝜓�𝐿𝐿 = 𝑠𝑠 �𝑍𝑍 �
𝜓𝜓
𝐴𝐴
�� 𝐿𝐿 ≡ 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
� 𝐿𝐿, 

Profit: Π𝜓𝜓 ≡ �1 −
𝜓𝜓 𝐴𝐴⁄
𝑧𝑧𝜓𝜓

� 𝑠𝑠�𝑧𝑧𝜓𝜓�𝐿𝐿 =
𝑠𝑠�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�
𝜁𝜁�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�

𝐿𝐿 =
𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) 𝐿𝐿 ≡ 𝜋𝜋 �

𝜓𝜓
𝐴𝐴
� 𝐿𝐿, 

Employment: 𝐿𝐿𝜓𝜓 ≡ 𝑅𝑅𝜓𝜓 − Π𝜓𝜓 = �1 −
1

𝜁𝜁�𝑧𝑧𝜓𝜓�
� 𝑠𝑠�𝑧𝑧𝜓𝜓�𝐿𝐿 =

𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) 𝐿𝐿 ≡ ℓ �

𝜓𝜓
𝐴𝐴
� 𝐿𝐿. 

Furthermore, the elasticities of 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ), 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ), and ℓ(𝜓𝜓 𝐴𝐴⁄ ) can be written solely in 

terms of 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) and 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) as follows: 

ℰ𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� = ℰ𝑠𝑠∘𝑍𝑍 �

𝜓𝜓
𝐴𝐴
� = ℰ𝑠𝑠 �𝑍𝑍 �

𝜓𝜓
𝐴𝐴
��ℰ𝑍𝑍 �

𝜓𝜓
𝐴𝐴
� = �1 − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
�� 𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� < 0; 

ℰ𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� = ℰ𝑟𝑟 𝜎𝜎⁄ �

𝜓𝜓
𝐴𝐴
� = ℰ𝑟𝑟 �

𝜓𝜓
𝐴𝐴
� − ℰ𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� = 1 − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� < 0; 

ℰℓ �
𝜓𝜓
𝐴𝐴
� = ℰ𝑟𝑟 𝜇𝜇⁄ �

𝜓𝜓
𝐴𝐴
� = ℰ𝑟𝑟 �

𝜓𝜓
𝐴𝐴
� − ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� = 1 − 𝜌𝜌 �

𝜓𝜓
𝐴𝐴
�𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� ⋛ 0. 

Because 𝜎𝜎(∙) is 𝐶𝐶2 and 𝜌𝜌(∙) is 𝐶𝐶1, these elasticities are all 𝐶𝐶1 functions of 𝜓𝜓 𝐴𝐴⁄ . Since 𝜎𝜎(∙) > 1,  

ℰ𝑟𝑟(∙) < 0 and ℰ𝜋𝜋(∙) < 0, and hence the revenue, 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, and the profit, 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, are always 

strictly decreasing in 𝜓𝜓 𝐴𝐴⁄ . In contrast, ℰℓ(∙) can change its sign, and hence the employment, 

ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, is generally nonmonotonic. However, its elasticity is related to those of the revenue 

and the markup rate. If the markup rate is decreasing in 𝜓𝜓 𝐴𝐴⁄  (i.e., −ℰ𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) > 0), the 

employment cannot decline as fast as the revenue (i.e., ℰℓ(𝜓𝜓 𝐴𝐴⁄ ) = ℰ𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ) − ℰ𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) >

ℰ𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )). Indeed, the employment is increasing in 𝜓𝜓 𝐴𝐴⁄ , if the markup rate declines faster than 

the revenue (i.e., −ℰ𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) > −ℰ𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ) > 0).  

2.4. Equilibrium Conditions 

Monopolistic competitive firms enter as long as their expected profit is equal to their 

entry cost. Assuming 𝐹𝐹𝑒𝑒 + 𝐹𝐹 < 𝜋𝜋(0)𝐿𝐿, the free entry condition is given by 

 
24This is one of the major advantages of using H.S.A. If we had used HDIA or HIIA instead, two aggregators would 
be needed to express the revenue, profit, and employment of each firm. 
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� max�Π𝜓𝜓 − 𝐹𝐹, 0� 𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓

𝜓𝜓
= � max �𝜋𝜋 �

𝜓𝜓
𝐴𝐴
� 𝐿𝐿 − 𝐹𝐹, 0� 𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓

𝜓𝜓
= 𝐹𝐹𝑒𝑒 > 0. 

where 𝐹𝐹𝑒𝑒  is the sunk entry cost. Since 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) is strictly decreasing in 𝜓𝜓, there exists a unique 

cutoff level of the marginal cost, 𝜓𝜓𝑐𝑐, for each 𝐴𝐴 given by  

Cutoff Rule: 𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�𝐿𝐿 = 𝐹𝐹 ⟺

𝜓𝜓𝑐𝑐
𝐴𝐴

= 𝜋𝜋−1 �
𝐹𝐹
𝐿𝐿
� < 𝑧𝑧̅ 

(5) 

such that firms stay and produce if 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓𝑐𝑐� and exit without producing if 𝜓𝜓 ∈ (𝜓𝜓𝑐𝑐 ,𝜓𝜓) , 

assuming the interior solution, 0 < 𝐺𝐺(𝜓𝜓𝑐𝑐) < 1. Then, the free entry condition can be written as: 

Free Entry Condition: 
𝐹𝐹𝑒𝑒 = � �𝜋𝜋 �

𝜓𝜓
𝐴𝐴
�𝐿𝐿 − 𝐹𝐹�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
. 

(6) 

In Figure 1, the cutoff rule, eq.(5), is depicted as the ray with the slope, 𝜋𝜋−1(𝐹𝐹 𝐿𝐿⁄ ), which is 

decreasing in 𝐹𝐹 𝐿𝐿⁄ . Along the cutoff rule, more competitive pressures, a lower 𝐴𝐴, leads to a 

tougher selection, a lower 𝜓𝜓𝑐𝑐 . The free-entry condition, eq.(6), has a negative slope below the 

cutoff rule, and a positive slope above the cutoff, and is tangent to a vertical line at the cutoff, 

because the cutoff rule maximizes the expected profit.25 Clearly, these two conditions jointly 

determine the equilibrium values of 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) and 𝜓𝜓𝑐𝑐 uniquely as 𝐶𝐶2-functions of 𝐹𝐹𝑒𝑒 𝐿𝐿⁄  and 

𝐹𝐹 𝐿𝐿⁄ .  The interior solution, 0 < 𝐺𝐺(𝜓𝜓𝑐𝑐) < 1, is ensured under: 

0 <
𝐹𝐹𝑒𝑒
𝐿𝐿

= � �𝜋𝜋 �𝜋𝜋−1 �
𝐹𝐹
𝐿𝐿
�
𝜓𝜓
𝜓𝜓𝑐𝑐
� −

𝐹𝐹
𝐿𝐿
� 𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
< � �𝜋𝜋 �𝜋𝜋−1 �

𝐹𝐹
𝐿𝐿
�
𝜓𝜓
𝜓𝜓�
� −

𝐹𝐹
𝐿𝐿
� 𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓�

𝜓𝜓
, 

which is assumed to hold throughout the paper.26 Note that this condition holds for a sufficiently 

small 𝐹𝐹𝑒𝑒 > 0 with no further restrictions on 𝐺𝐺(∙) or 𝑠𝑠(∙). 

Having 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) and 𝜓𝜓𝑐𝑐 pinned down uniquely by eqs.(5)-(6), let us turn to the mass of 

the entrants, 𝑀𝑀, that pay the entry cost 𝐹𝐹𝑒𝑒.27 By rewriting the adding-up constraint, eq.(3) as:  

 
25As 𝐴𝐴 → ∞, the free entry condition curve is asymptotic to the horizontal line defined by 𝐺𝐺(𝜓𝜓𝑐𝑐) =
𝐹𝐹𝑒𝑒 [𝜋𝜋(0)𝐿𝐿 − 𝐹𝐹]⁄ , which is bounded away from the lower bound, 𝜓𝜓𝑐𝑐 = 𝜓𝜓, if and only if 𝜋𝜋(0) < ∞.     
26For 𝜓𝜓� = ∞, this condition is reduced to 𝜋𝜋(0)𝐿𝐿 > 𝐹𝐹𝑒𝑒 + 𝐹𝐹 > 𝐹𝐹𝑒𝑒 > 0, which is already assumed. For 𝜓𝜓� < ∞, the 
upper bound on 𝐹𝐹𝑒𝑒 is less than 𝜋𝜋(0)𝐿𝐿 − 𝐹𝐹, and simple algebra can show that this upper bound is independent of 𝐿𝐿 
under CES, while increasing in 𝐿𝐿 under A2 introduced later. 
27What makes H.S.A. particularly tractable is this recursive structure. Under HDIA and HIIA, the two other classes 
of the demand system studied in Matsuyama and Ushchev (2020a), the market share of each firm depends on the 
two aggregators, one affecting the pricing decision of the firm and the other its entry decision. As a result, the free-
entry equilibrium is determined jointly by the three conditions. This complicates not only comparative statics, but 
also requires further assumptions on the firm distribution and the demand system to ensure the existence and the 
uniqueness of the equilibrium. 
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1 ≡ � 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴
�𝑑𝑑𝑑𝑑

Ω
= 𝑀𝑀� 𝑠𝑠 �𝑍𝑍 �

𝜓𝜓
𝐴𝐴
��𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
= 𝑀𝑀� 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
, 

the equilibrium values of 𝑀𝑀 can be given by: 
 

𝑀𝑀 = �� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
�
−1

= �� 𝑟𝑟 �𝜋𝜋−1 �
𝐹𝐹
𝐿𝐿
� 𝜉𝜉� 𝑑𝑑𝑑𝑑(𝜓𝜓𝑐𝑐𝜉𝜉)

1

𝜉𝜉
�
−1

 
(7) 

as a 𝐶𝐶2-function of 𝐹𝐹𝑒𝑒 𝐿𝐿⁄  and 𝐹𝐹 𝐿𝐿⁄ . 

Eq.(5) through  eq.(7) fully determine the equilibrium.28 For the equilibrium value of 

𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐), the mass of firms that stay, which is equal to the Lebesgue measure of Ω, we can use 

eq.(7) to obtain 
 

𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) = �� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�
𝑑𝑑𝑑𝑑(𝜓𝜓)
𝐺𝐺(𝜓𝜓𝑐𝑐)

𝜓𝜓𝑐𝑐

𝜓𝜓
�
−1

= �� 𝑟𝑟 �𝜋𝜋−1 �
𝐹𝐹
𝐿𝐿
� 𝜉𝜉� 𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)

1

𝜉𝜉
�
−1

, 
(8) 

where the second equality is obtained by changing variables as 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄  with 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ , and 

𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) ≡
𝐺𝐺(𝜓𝜓𝑐𝑐𝜉𝜉)
𝐺𝐺(𝜓𝜓𝑐𝑐)  

is the cdf of the marginal cost relative to the cutoff marginal cost among the firms that stay. 

Lemma 2 of Appendix A shows that a lower 𝜓𝜓𝑐𝑐  (tougher selection) shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the right in 

the MLR ordering if ℰ𝑔𝑔′ (𝜓𝜓) < 0, and to the right in the FSD ordering if ℰ𝐺𝐺′ (𝜓𝜓) < 0, while a 

lower 𝜓𝜓𝑐𝑐 shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the left in the MLR ordering if ℰ𝑔𝑔′ (𝜓𝜓) > 0, and to the left in the FSD 

ordering if ℰ𝐺𝐺′ (𝜓𝜓) > 0.29 The knife-edge case, where 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) is independent of 𝜓𝜓𝑐𝑐 , occurs when  

ℰ𝑔𝑔′ (𝜓𝜓) = ℰ𝐺𝐺′ (𝜓𝜓) = 0, i.e., when 𝐺𝐺(∙) is a power function (and firm productivity is Pareto-

distributed). 

2.5.  Aggregate Labor Cost and Profit Shares and TFP 

 
28The Walras Law ensures the labor market equilibrium. This can be verified as: labor demand per entrant = 𝐹𝐹𝑒𝑒 +
𝐹𝐹𝐹𝐹(𝜓𝜓𝑐𝑐) + ∫ ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿𝐿𝐿𝐿𝐿(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓  = ∫ [𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 + ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿]𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓 = 𝐿𝐿 ∫ 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓 = 𝐿𝐿 𝑀𝑀⁄ , where eq.(5) 

and eq.(3), are used in the second and the last equalities. Of course, for these equilibrium conditions to be well-
defined, the integrals in eq.(6) and eq.(7) must be finite, which is clearly the case if 𝜓𝜓 > 0. For 𝜓𝜓 = 0, Lemma 4 of 
Appendix B shows that 1 ≤ lim

𝑧𝑧→0
 𝜁𝜁(𝑧𝑧) < 2 + lim

𝜓𝜓→0
ℰ𝑔𝑔(𝜓𝜓) < ∞ is a sufficient condition. 

29Lemma 1 of Appendix A shows that ℰ𝑔𝑔′ (𝜓𝜓) < 0 always implies ℰ𝐺𝐺′ (𝜓𝜓) < 0, while ℰ𝑔𝑔′ (𝜓𝜓) ≥ 0 implies ℰ𝐺𝐺′ (𝜓𝜓) ≥ 0 
only with some additional conditions. In Generalized Pareto (Example 2 of Appendix A), ℰ𝑔𝑔′ (𝜓𝜓) ⋛ 0, depending on 
the parameters. Lognormal (Example 3) and Fréchet/Weibull (Example 4) satisfy ℰ𝑔𝑔′ (𝜓𝜓) < 0 hence ℰ𝐺𝐺′ (𝜓𝜓) < 0. 
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For any two functions of 𝜓𝜓 𝐴𝐴⁄ ,𝑤𝑤(∙) and 𝑓𝑓(∙), we denote the 𝑤𝑤(∙)-weighted average of 

𝑓𝑓(∙) among the active firms, 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓𝑐𝑐�, by 

𝔼𝔼𝑤𝑤(𝑓𝑓) ≡
∫ 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ )𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

=
∫ 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ )𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑(𝜓𝜓)

𝐺𝐺(𝜓𝜓𝑐𝑐)
𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑(𝜓𝜓)
𝐺𝐺(𝜓𝜓𝑐𝑐)

𝜓𝜓𝑐𝑐
𝜓𝜓

. 

Likewise, we denote the unweighted average of 𝑓𝑓(∙) among the active firms, 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓𝑐𝑐� by 

𝔼𝔼1(𝑓𝑓) ≡
∫ 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

= � 𝑓𝑓 �
𝜓𝜓
𝐴𝐴
�
𝑑𝑑𝑑𝑑(𝜓𝜓)
𝐺𝐺(𝜓𝜓𝑐𝑐)

𝜓𝜓𝑐𝑐

𝜓𝜓
. 

From these definitions, one can immediately derive the following identity:  

𝔼𝔼𝑤𝑤 �
𝑓𝑓
𝑤𝑤
� =

𝔼𝔼1(𝑓𝑓)
𝔼𝔼1(𝑤𝑤) = �

𝔼𝔼1(𝑤𝑤)
𝔼𝔼1(𝑓𝑓)�

−1

= �𝔼𝔼𝑓𝑓 �
𝑤𝑤
𝑓𝑓
��
−1

. 

By applying this identity to 𝜋𝜋(∙) 𝑟𝑟(∙)⁄ = 1 − ℓ(∙) 𝑟𝑟(∙)⁄ = 1 𝜎𝜎(∙)⁄ = 1 − 1 𝜇𝜇(∙),⁄  the aggregate 

labor cost share, which is the average inverse markup rate, can be expressed as:  

𝔼𝔼1(ℓ)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜇𝜇
� = 1 − �𝔼𝔼𝜋𝜋 �

𝜇𝜇
𝜇𝜇 − 1

��
−1

=
1

𝔼𝔼ℓ(𝜇𝜇), 

which shows that the aggregate labor cost share is given by the arithmetic mean of firm-level 

labor cost share, if weighted by revenue or by the harmonic mean if weighted by employment.30  

Likewise, the aggregate profit share, which is the average inverse price elasticity, can be 

expressed as: 

𝔼𝔼1(𝜋𝜋)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜎𝜎
� =

1
𝔼𝔼𝜋𝜋(𝜎𝜎) = 1 − �𝔼𝔼ℓ �

𝜎𝜎
𝜎𝜎 − 1

��
−1

, 

which shows that the aggregate profit share is given by the arithmetic mean of firm-level profit  

share, if weighted by revenue or by the harmonic mean if weighted by profit. 

 For TFP, 𝑋𝑋 𝐿𝐿⁄ = 𝑋𝑋(𝐱𝐱) 𝐿𝐿⁄ = 1 𝑃𝑃(𝐩𝐩)⁄ , which is equal to the aggregate consumption per 

unit of labor, and the welfare measure, can be obtained from eq.(4) and eq.(7) as  
𝑋𝑋
𝐿𝐿

=
1
𝑃𝑃

=
𝑐𝑐
𝐴𝐴

exp�𝔼𝔼𝑟𝑟[Φ ∘ 𝑍𝑍]�. 

 
30This also suggests that the average markup rate should be measured by the harmonic mean of firm-level markup 
rate if weighted by revenue and the arithmetic mean if weighted by employment, as pointed out by Baqaee, Farhi, 
and Sangani (2023) and Edmond, Midrigan, and Xu (2023). 
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3.  Revisiting the Original Melitz Model: CES Benchmark 

As a benchmark, consider first the case of CES, studied by Melitz (2003), which is a 

special case of H.S.A., 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 > 1 for all 𝑧𝑧 ∈ (0,∞) or equivalently, 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 for all 𝑧𝑧 ∈

(0,∞).  Even though Melitz under CES is well-known, it is instructive to obtain its properties as 

a special case of Melitz under H.S.A., because his analysis and its countless reproduction by 

those who follow-- see a survey by Melitz and Redding (2014)--make heavy use of CES from the 

very beginning. This makes it hard to see which properties of the Melitz model are specific to 

CES or which ones can be generalized under H.S.A. 

The markup rate is simply 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) = 𝜎𝜎 (𝜎𝜎 − 1)⁄ , and the pass-through rate is 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) =

1.  Hence, they are both uniform across all firms, unaffected by 𝐿𝐿,𝐹𝐹𝑒𝑒 ,𝐹𝐹, 𝐺𝐺(∙), 𝐴𝐴, 𝜓𝜓𝑐𝑐, and thus 

never change across equilibriums.  The profit is 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 = 𝑐𝑐0𝐿𝐿(𝜓𝜓 𝐴𝐴⁄ )1−𝜎𝜎,  where 𝑐𝑐0 ≡

(𝛾𝛾 𝜎𝜎⁄ )(1 − 1 𝜎𝜎⁄ )𝜎𝜎−1.  Thus, the cutoff rule, eq.(5), and free entry condition, eq.(6), become: 

Cutoff Rule: 𝑐𝑐0𝐿𝐿 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�
1−𝜎𝜎

= 𝐹𝐹. 

Free Entry Condition: � �𝑐𝑐0𝐿𝐿 �
𝜓𝜓
𝐴𝐴
�
1−𝜎𝜎

− 𝐹𝐹� 𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
= 𝐹𝐹𝑒𝑒; 

As shown in Figure 2, the cutoff rule and the free-entry condition have the unique intersection.31 

An increase in 𝐿𝐿 shifts the cutoff rule counter-clockwise, and the free-entry condition to the left, 

from the dashed curves to the solid ones. To see how the intersection moves, eliminate 𝐿𝐿 from 

these two conditions to obtain 
 

� ��
𝜓𝜓
𝜓𝜓𝑐𝑐
�
1−𝜎𝜎

− 1� 𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
=
𝐹𝐹𝑒𝑒
𝐹𝐹

. 
(9) 

As 𝐿𝐿 increases, the intersection moves to the left along the locus given by eq.(9), which is 

independent of 𝐴𝐴, as depicted by the horizontal dotted line in Figure 2.32 The equilibrium cutoff, 

𝜓𝜓𝑐𝑐, is thus independent of 𝐿𝐿. Eq.(9) also shows that the equilibrium cutoff, 𝜓𝜓𝑐𝑐, declines in 

response to a lower 𝐹𝐹𝑒𝑒 𝐹𝐹⁄  and to an improvement in productivity distribution, captured by a first-

order stochastic dominant (FSD) shift of 𝜓𝜓 ∼ 𝐺𝐺(∙) to the left. Furthermore, 𝐴𝐴 can be expressed as  

 
31 This proof of the existence and uniqueness of the equilibrium is simpler than Melitz (2003; Appendix B).  
32 The expression analogous to eq.(9) has been known; see, e.g., eq.(13) of Bernard, Redding and Schott (2007).   
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𝐴𝐴 = 𝜓𝜓𝑐𝑐 �
𝑐𝑐0𝐿𝐿
𝐹𝐹
�

1
1−𝜎𝜎

= �
𝑐𝑐0𝐿𝐿
𝐹𝐹𝑒𝑒

� [(𝜓𝜓)1−𝜎𝜎 − (𝜓𝜓𝑐𝑐)1−𝜎𝜎]𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
�

1
1−𝜎𝜎

. 

Thus, a higher 𝐿𝐿, a lower 𝐹𝐹𝑒𝑒, a lower 𝐹𝐹, and a FSD shift of 𝜓𝜓 ∼ 𝐺𝐺(∙) to the left all lead to more 

competitive pressures, a lower 𝐴𝐴.  Since 𝐴𝐴 𝑃𝑃⁄  is constant under CES, the effect on 𝑃𝑃 is the same, 

and the effect on TFP, 𝑋𝑋 𝐿𝐿⁄ = 1 𝑃𝑃⁄ , goes the opposite direction. 

The revenue, the (gross) profit and the (variable) employment of a 𝜓𝜓-firm are: 

Revenue: 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� 𝐿𝐿 = 𝜎𝜎𝑐𝑐0𝐿𝐿 �

𝜓𝜓
𝐴𝐴
�
1−𝜎𝜎

= 𝜎𝜎𝜎𝜎 �
𝜓𝜓
𝜓𝜓𝑐𝑐
�
1−𝜎𝜎

≥ 𝜎𝜎𝜎𝜎 

Profit: 𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� 𝐿𝐿 = 𝑐𝑐0𝐿𝐿 �

𝜓𝜓
𝐴𝐴
�
1−𝜎𝜎

= 𝐹𝐹 �
𝜓𝜓
𝜓𝜓𝑐𝑐
�
1−𝜎𝜎

≥ 𝐹𝐹 

Employment: ℓ �
𝜓𝜓
𝐴𝐴
� 𝐿𝐿 = (𝜎𝜎 − 1)𝑐𝑐0𝐿𝐿 �

𝜓𝜓
𝐴𝐴
�
1−𝜎𝜎

= (𝜎𝜎 − 1)𝐹𝐹 �
𝜓𝜓
𝜓𝜓𝑐𝑐
�
1−𝜎𝜎

≥ (𝜎𝜎 − 1)𝐹𝐹 

which are all decreasing power functions in 𝜓𝜓 with the exponent, 1 − 𝜎𝜎 < 0. Thus, their ratios 

across two firms with 𝜓𝜓,𝜓𝜓′ ∈ (𝜓𝜓,𝜓𝜓𝑐𝑐), given by (𝜓𝜓 𝜓𝜓′⁄ )1−𝜎𝜎 > 1, are independent of 𝐿𝐿,𝐹𝐹𝑒𝑒 ,𝐹𝐹 and 

𝐺𝐺(∙), as well as 𝐴𝐴 and 𝜓𝜓𝑐𝑐. Hence, the relative size of two firms, whether measured in the 

revenue, profit, or variable employment, never changes across different equilibriums. 

From the free entry condition and the adding-up constraint, 𝑀𝑀[𝐹𝐹𝑒𝑒 + 𝐺𝐺(𝜓𝜓𝑐𝑐)𝐹𝐹] = 𝐿𝐿 𝜎𝜎⁄ ,  

which states that the aggregate entry cost plus the aggregate expected fixed cost is equal to the 

aggregate profit. Using eq.(9), this can be further rewritten to obtain: 

𝑀𝑀 =
𝐿𝐿 𝜎𝜎⁄

𝐹𝐹𝑒𝑒 + 𝐺𝐺(𝜓𝜓𝑐𝑐)𝐹𝐹
=

𝐿𝐿
𝜎𝜎𝐹𝐹𝑒𝑒

�1 −
1

𝐻𝐻(𝜓𝜓𝑐𝑐)� ;  𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) =
𝐿𝐿 𝜎𝜎⁄

𝐹𝐹𝑒𝑒 𝐺𝐺(𝜓𝜓𝑐𝑐)⁄ + 𝐹𝐹
=

𝐿𝐿
𝐻𝐻(𝜓𝜓𝑐𝑐)𝜎𝜎𝜎𝜎

, 

where 𝐻𝐻(𝜓𝜓𝑐𝑐) ≡ ∫ (𝜉𝜉)1−𝜎𝜎𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)1
𝜉𝜉 . Since (𝜉𝜉)1−𝜎𝜎 is decreasing, Lemma 2 implies 

ℰ𝐺𝐺′ (⋅) ⋛ 0 ⟹𝐻𝐻′(𝜓𝜓𝑐𝑐) ⋚ 0, 

from which it is straightforward to verify the following:   

Proposition 1: Under CES,  
1a: A higher 𝐿𝐿 keeps 𝜓𝜓𝑐𝑐 unaffected and increases both 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) proportionately; 

1b: A lower 𝐹𝐹𝑒𝑒 decreases 𝜓𝜓𝑐𝑐 and increases 𝑀𝑀; It increases 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) if ℰ𝐺𝐺′ (𝜓𝜓) < 0, decreases 

𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) if ℰ𝐺𝐺′ (𝜓𝜓) > 0 and keeps 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) unaffected if ℰ𝐺𝐺′ (𝜓𝜓) = 0; 

1c: A lower 𝐹𝐹 increases 𝜓𝜓𝑐𝑐 and increases 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐); It increases 𝑀𝑀 if ℰ𝐺𝐺′ (𝜓𝜓) < 0, decreases 𝑀𝑀 if 

ℰ𝐺𝐺′ (𝜓𝜓) > 0 and keeps 𝑀𝑀 unaffected if ℰ𝐺𝐺′ (𝜓𝜓) = 0. 
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Although most of these results are known, the result that the sign of 𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)] 𝑑𝑑𝐹𝐹𝑒𝑒 ⁄  and the 

sign of 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  are the same with the sign of ℰ𝐺𝐺′ (𝜓𝜓) seems new.33 A FSD shift of 𝐺𝐺(∙) to the left 

reduces 𝜓𝜓𝑐𝑐. However, its effects on 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) are ambiguous in general.34   

 To summarize the market size effects under CES, the markup rate is independent of 

market size and uniform across all active firms. Furthermore, market size has no effect on the 

cutoff, 𝜓𝜓𝑐𝑐, and hence on the productivity distribution as well as the revenue and employment 

across active firms, which are all monotonically increasing in the firm’s productivity. Market 

size only increases the masses of entrants and of active firms proportionately. All adjustments 

are at the extensive margin. 

 

4.  Melitz under H.S.A.: Cross-Sectional Implications 

We now depart from CES. Even though the 2nd and the 3rd laws may not be the universal 

laws, satisfied in every single sector in every single country, there seems to be ample evidence in 

their support, as cited in the introduction, so that we will primarily focus on the implications of 

the 2nd and the 3rd law. In this section, we explore how the impacts of more competitive pressures 

(a lower 𝐴𝐴) vary across heterogeneous firms, first under the 2nd law and then under the 3rd law. 

Of course, 𝐴𝐴 is an endogenous variable, whose change must be triggered by a change in some 

exogenous variables in general equilibrium. Nevertheless, we postpone the general equilibrium 

comparative statics analysis to the next section. 

4.1.  Cross-Sectional Implications of the 2nd Law of Demand 

A2: 𝜁𝜁′(𝑧𝑧) > 0 for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅) ⟺ 𝜎𝜎′(𝜓𝜓 𝐴𝐴⁄ ) = 𝜁𝜁′�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�𝑍𝑍′(𝜓𝜓 𝐴𝐴⁄ ) > 0 for all 𝜓𝜓 𝐴𝐴⁄ ∈ (0, 𝑧𝑧̅) 

Under A2, ℰ𝜁𝜁(𝑧𝑧) > 0 > ℰ𝑠𝑠(𝑧𝑧) for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅). Hence, A1 is ensured under A2. This 

assumption means that the price elasticity of demand, 𝜁𝜁�𝑝𝑝𝜓𝜓 𝐴𝐴⁄ �, is strictly increasing in its price, 

 
33We inquired Melitz about this, to which he replied that he had not seen these results. Appendix A shows that, 
ℰ𝑔𝑔′ (⋅) < 0 and ℰ𝐺𝐺′ (⋅) < 0 for Fréchet, Weibull, and Lognormal, which suggests, among others, that the results 
obtained by some recent studies on the Melitz model under Lognormal, e.g., Head, Mayer, and Theonig (2014), are 
qualitatively robust to any distribution with ℰ𝑔𝑔′ (⋅) < 0. 
34To see this, consider the case of power-distributed marginal cost (i.e., Pareto-distributed productivity), 𝐺𝐺(𝜓𝜓) =
�𝜓𝜓 𝜓𝜓⁄ �

𝜅𝜅
, 0 < 𝜓𝜓 < 𝜓𝜓, 𝜅𝜅 > 𝜎𝜎 − 1, so that ℰ𝐺𝐺′ (⋅) = 0 and 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) = 𝜉𝜉𝜅𝜅 , and 𝐻𝐻(𝜓𝜓𝑐𝑐) = ∫ 𝜅𝜅(𝜉𝜉)𝜅𝜅−𝜎𝜎𝑑𝑑𝑑𝑑1

0 = 𝜅𝜅
𝜅𝜅−𝜎𝜎+1

> 1 is 

independent of 𝜓𝜓𝑐𝑐. Under the condition that ensures the interior solution, 𝐺𝐺(𝜓𝜓𝑐𝑐) = 𝜅𝜅−𝜎𝜎+1
𝜎𝜎−1

�𝐹𝐹𝑒𝑒
𝐹𝐹
� < 1, we have 𝑀𝑀 =

𝜎𝜎−1
𝜅𝜅
� 𝐿𝐿
𝜎𝜎𝐹𝐹𝑒𝑒
� > 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) = 𝜅𝜅−𝜎𝜎+1

𝜅𝜅
� 𝐿𝐿
𝜎𝜎𝜎𝜎
�.  Thus, a FSD shift in 𝐺𝐺, due to a change in 𝜓𝜓, has no effect on 𝐺𝐺(𝜓𝜓𝑐𝑐),𝑀𝑀 nor 

𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐), while a FSD shift in 𝐺𝐺, due to a change in 𝜅𝜅, affects 𝐺𝐺(𝜓𝜓𝑐𝑐),𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐). 
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𝑝𝑝𝜓𝜓 for a fixed 𝐴𝐴, which each firm takes as given. It is thus equivalent to Marshall’s 2nd Law of 

demand. Under A2, 𝜁𝜁�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )� = 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) is a strictly increasing function of 𝜓𝜓 𝐴𝐴⁄ .  It means 

that ℰ𝜁𝜁 (𝜁𝜁−1)⁄ (𝑧𝑧) = ℰ𝜁𝜁(𝑧𝑧) ℰ𝑠𝑠(𝑧𝑧)⁄ < 0, hence ℰ𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) = ℰ[𝜁𝜁 (𝜁𝜁−1)⁄ ]∘𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) =

ℰ𝜁𝜁 (𝜁𝜁−1)⁄ �𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) < 0 and 

𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� = ℰ𝑍𝑍 �

𝜓𝜓
𝐴𝐴
� = 1 + ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� < 1, 

so that less productive firms have lower markup rates and that the price responds less than 

proportionately to a change in the marginal cost (Incomplete Pass-Through).  Furthermore, 

𝜕𝜕 ln𝑝𝑝𝜓𝜓
𝜕𝜕 ln𝐴𝐴

=
𝜕𝜕 ln(𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )𝐴𝐴)

𝜕𝜕 ln𝐴𝐴
= 1 −

𝑑𝑑 ln�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�
𝑑𝑑 ln(𝜓𝜓 𝐴𝐴⁄ ) = 1 − ℰ𝑍𝑍 �

𝜓𝜓
𝐴𝐴
� = 1 − 𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� > 0. 

Thus, the firm reduces its price (and its markup rate) in response to more competitive pressures, 

a lower 𝐴𝐴, which occurs either when other firms reduce their prices (Strategic complementarity 

in pricing) or when more firms enter (Procompetitive entry).35 

 For further exploration, let us reformulate the definitions of log-super(sub)modularity 

specifically for our context. A positive-valued 𝐶𝐶2-function 𝑓𝑓 of a single variable, 𝜓𝜓 𝐴𝐴⁄ > 0, 

𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ), when viewed as a function of the two variables, 𝜓𝜓 and 𝐴𝐴, is strictly log-

super(sub)modular in 𝜓𝜓 and 𝐴𝐴 if 𝜕𝜕2 ln 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕⁄ > (<)0.  Or, we sometimes say, more 

simply, that 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) is strictly log-super(sub)modular, when this condition holds. The log-

super(sub)modularity of a decreasing function 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) thus means that more competitive 

pressures, a lower 𝐴𝐴, causes a disproportionately larger (smaller) decline in 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) for a higher 

𝜓𝜓. The next lemma offers a simple way of verifying the log-super(sub)modularity of 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ). 

Lemma 5: For any positive-valued 𝐶𝐶2-function 𝑓𝑓 of a single variable, 𝜓𝜓 𝐴𝐴⁄ > 0,  

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜕𝜕2 ln𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ )

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
� = −𝑠𝑠𝑠𝑠𝑠𝑠 �ℰ𝑓𝑓′ �

𝜓𝜓
𝐴𝐴
�� = −𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑑𝑑2 ln𝑓𝑓�𝑒𝑒ln(𝜓𝜓 𝐴𝐴⁄ )�
(𝑑𝑑 ln(𝜓𝜓 𝐴𝐴⁄ ))2

�. 

The proof is straightforward and hence omitted. This lemma, which is known,36 states that 

𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) is strictly log-super(sub)modular in 𝜓𝜓 and 𝐴𝐴 if and only if ℰ𝑓𝑓(∙) is strictly 

 
35As pointed out in Matsuyama and Ushchev (2020a), the 2nd law of demand (or incomplete pass-through) is in 
general neither sufficient nor necessary for procompetitive entry (or strategic complementarity in price), since the 
former is about the property of the individual demand curve, while the latter is about the property of the entire 
demand system. They are equivalent under H.S.A., since the single aggregator 𝐴𝐴, which captures all the interaction 
across firms, enters the price elasticity function only as 𝜓𝜓 𝐴𝐴⁄ , so that a change in 𝐴𝐴 is isomorphic to a change in 𝜓𝜓, 
acting as a magnifier of firm heterogeneity. 
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decreasing(increasing), that is, if and only if ln 𝑓𝑓(𝑒𝑒𝑥𝑥) = ln 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) is strictly concave (convex) 

in 𝑥𝑥 ≡ ln(𝜓𝜓 𝐴𝐴⁄ ). Since ℰ𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) = 1 − 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) < 0 is strictly decreasing in 𝜓𝜓 𝐴𝐴⁄  under A2, 

Lemma 5 immediately tells us that the profit, 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, is strictly log-supermodular in 𝜓𝜓 and 𝐴𝐴.  

The next proposition summarizes these implications of A2, 

Proposition 2 (Cross-Sectional Implications of 2nd Law): Under A2, 

2a (Incomplete pass-through):  

ℰ𝜇𝜇 �
𝜓𝜓
𝐴𝐴
� < 0 ⟺ 0 < 𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� = 1 + ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� = 1 − ℰ1 𝜇𝜇⁄ �

𝜓𝜓
𝐴𝐴
� < 1. 

2b (Procompetitive effect/strategic complementarity):  
𝜕𝜕 ln 𝑝𝑝𝜓𝜓
𝜕𝜕 ln𝐴𝐴

= 1 − 𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� = −ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� = ℰ1 𝜇𝜇⁄ �

𝜓𝜓
𝐴𝐴
� > 0. 

2c (Strictly log-supermodular profit): 

ℰ𝜋𝜋′ �
𝜓𝜓
𝐴𝐴
� = −𝜎𝜎′ �

𝜓𝜓
𝐴𝐴
� < 0 ⟺

𝜕𝜕2 ln𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

> 0. 

Because 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) is strictly log-supermodular, more competitive pressures, a lower 𝐴𝐴, 

causes a proportionately larger decline in the profit among higher-𝜓𝜓 firms. Because higher-𝜓𝜓 

firms have lower profits, this implies that more competitive pressures lead to a larger dispersion 

of profits across firms with the profit density shifting toward lower-𝜓𝜓 firms. Figure 3a illustrates 

this by plotting the graphs of log-profit, lnΠ𝜓𝜓, as a function of log-marginal cost, ln𝜓𝜓. The 

graph is always downward-sloping, and it is strictly concave under A2. The effect of a lower 𝐴𝐴, 

for a fixed 𝐿𝐿, is captured by a parallel leftward shift of the graph, which means a larger 

downward shift for high-𝜓𝜓 due to the concavity. Thus, higher-𝜓𝜓 firms experience 

proportionately larger decline in the profit.37 

 

4.2.  Cross-Sectional Implications of the 3rd Law of Demand 
 

36 See, e.g., Sampson (2016; Lemma 1) and Davis and Dingel (2020; Lemma 8).  
37Figure 3a also depicts the effect of a higher 𝐿𝐿 for a fixed 𝐴𝐴 as a parallel upward shift of the graph. In Proposition 6, 
it will be shown that a higher 𝐿𝐿 always leads to a lower 𝐴𝐴. Thus, if 𝐴𝐴 declines due to a higher 𝐿𝐿, the full impact of a 
higher 𝐿𝐿 on the profit is captured by a combination of the parallel upward shift (the positive direct effect) and the 
parallel leftward shift (the indirect effect due to a lower 𝐴𝐴). Notice that the positive direct effect is uniform across 
firms, while the negative indirect effect is disproportionately smaller for low-𝜓𝜓 firms under A2. In Proposition 7a, it 
will be shown that the combined effect leads to a clockwise rotation of the graph, as depicted in Figure 3a, around 
the pivot point, which is located strictly below the cutoff 𝜓𝜓𝑐𝑐. This means that a higher 𝐿𝐿 causes the profits to go up 
among low-𝜓𝜓 firms and to go down among high-𝜓𝜓 firms, generating what Mrázová-Neary (2017; 2019) dubbed as 
The Matthew Effect, “to those who have, more shall be given.” 
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A2 alone ensures neither log-supermodularity nor log-submodularity of 

𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ), 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 or ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, since the monotonicity of 𝜎𝜎(∙) alone does not imply the 

monotonicity of ℰ𝑍𝑍(∙) = 𝜌𝜌(∙); ℰ𝑟𝑟(∙) = [1 − 𝜎𝜎(∙)]𝜌𝜌(∙); and ℰℓ(∙) = 1 − 𝜌𝜌(∙)𝜎𝜎(∙). Partially 

motivated by this, we now consider the following assumption. 

A3: For all 𝑧𝑧 ∈ (0, 𝑧𝑧̅), 

ℰ𝜁𝜁 (𝜁𝜁⁄ −1)
′ (𝑧𝑧) = −

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑧𝑧𝜁𝜁′(𝑧𝑧)

[𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧)� ≥ 0 ⟺ 𝜌𝜌′ �
𝜓𝜓
𝐴𝐴
� ≥ 0 

A3 means that the pass-through rate is weakly increasing in 𝜓𝜓, which we shall call the 3rd Law 

of demand. In particular, we call it the weak 3rd Law of demand or simply the weak A3 when 

the inequality in A3 holds weakly, and the strong 3rd Law of demand or simply the strong A3, 

when the inequality in A3 holds strictly and hence the pass-through rate is strictly increasing in 

𝜓𝜓. Of the three parametric families of H.S.A. discussed in Appendix D, Generalized Translog 

satisfies A2 but violates even the weak A3; Constant Pass-Through (CoPaTh) satisfies A2 and 

the weak A3, but violates the strong A3; and Power Elasticity of Markup Rates (PEM) satisfies 

both A2 and the strong A3. 

 Then, using Lemma 5, we have the following proposition:  

Proposition 3 (Cross-Sectional Implications of 3rd Law):   

3a (Weak (strict) log-submodular price and markup rate): Under the weak (strong) A3, 

ℰ𝑍𝑍′ �
𝜓𝜓
𝐴𝐴
� = 𝜌𝜌′ �

𝜓𝜓
𝐴𝐴
� ≥ (>) < 0 ⟺

𝜕𝜕2 ln(𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )𝐴𝐴)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝜕𝜕2 ln𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
≤ (<)0, 

3b (Strict log-supermodular revenue): Under A2 and the weak A3, 

ℰ𝑟𝑟′ �
𝜓𝜓
𝐴𝐴
� = �1 − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
�� 𝜌𝜌′ �

𝜓𝜓
𝐴𝐴
� − 𝜎𝜎′ �

𝜓𝜓
𝐴𝐴
�𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� < 0 ⟺

𝜕𝜕2 ln 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

> 0 

3c (Strict log-supermodular employment): Under A2 and the weak A3, 

ℰℓ′ �
𝜓𝜓
𝐴𝐴
� = −𝜎𝜎′ �

𝜓𝜓
𝐴𝐴
�𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
�𝜌𝜌′ �

𝜓𝜓
𝐴𝐴
� < 0 ⟺

𝜕𝜕2 ln ℓ(𝜓𝜓 𝐴𝐴⁄ )
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

> 0. 

Proposition 3a states that the price, 𝑝𝑝𝜓𝜓 = 𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )𝐴𝐴, the markup rate, 𝜇𝜇𝜓𝜓 = 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ), and the 

normalized price, 𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ), are all weakly (strictly) log-submodular in 𝜓𝜓 and 𝐴𝐴 under the weak 

(strong) A3. More competitive pressures thus cause a markup rate decline, proportionately no 

larger (strictly smaller) among higher-𝜓𝜓 firms. Since their markup rates are lower under A2, this 

also implies no larger (strictly smaller) dispersion of the markup rate across firms. Figure 3b 

illustrates this by plotting the graphs of log-markup rate, ln 𝜇𝜇𝜓𝜓, as a function of log-marginal 

cost, ln𝜓𝜓. The graph is downward-sloping under A2, and it is strictly convex under strong A3. 
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The effect of a decline in 𝐴𝐴 is captured by a parallel leftward shift of the graph, which means a 

larger downward shift for low-𝜓𝜓 due to the convexity. Thus, lower-𝜓𝜓 firms experience 

proportionately larger decline in the markup rate. 

Proposition 3b states that the revenue, 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, is strictly log-supermodular in 𝜓𝜓 and 𝐴𝐴 

under A2 and the weak A3.  This means that a lower 𝐴𝐴, causes a proportionately larger decline in 

the revenue among higher-𝜓𝜓 firms. Since their revenues are lower, this also implies that more 

competitive pressures lead to a larger dispersion of revenues across firms with the profit density 

shifting toward lower-𝜓𝜓 firms. Thus, 𝑅𝑅𝜓𝜓 = 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 under A2 and the weak A3 share the same 

properties with Π𝜓𝜓 = 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 under A2, as depicted in Figure 3a.38  This theoretical finding, a 

shift of the revenue density from the less productive/smaller firms with lower markup rates to the 

more productive/larger firms with higher markup rates, echoes the calibration findings by 

Baqaee, Farhi, and Sangani (2023) and Edmond, Midrigan, and Xu (2023).  

Proposition 3c states that the employment, ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿, is also strictly log-supermodular in 

𝜓𝜓 and 𝐴𝐴 under A2 and the weak A3.  However, its strict log-supermodularity has different 

implications from that of the profit 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 and the revenue 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ).  This is because the 

employment ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐿𝐿 is hump-shaped in 𝜓𝜓 𝐴𝐴⁄  under A2 and the weak A3. To see this, we first 

prove in Appendix C.1: 

Lemma 6: Under A2 and the weak A3, lim
𝜓𝜓 𝐴𝐴⁄ →0

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) < 1 < lim
𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ). 

Since ℰℓ(𝜓𝜓 𝐴𝐴⁄ ) = 1 − 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) is globally decreasing, Lemma 6 implies that there exists 

a unique 𝜓𝜓� > 0, such that  ℰℓ(𝜓𝜓 𝐴𝐴⁄ ) > 0 for 𝜓𝜓 < 𝜓𝜓� and  ℰℓ(𝜓𝜓 𝐴𝐴⁄ ) < 0 for 𝜓𝜓 > 𝜓𝜓�.  Thus, 

Proposition 4: Under A2 and the weak A3, the employment function, ℓ(𝜓𝜓 𝐴𝐴⁄ ) =

𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ) 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )⁄  is hump-shaped, with its unique peak is reached at, 𝑧̂𝑧 ≡ 𝑍𝑍�𝜓𝜓� 𝐴𝐴⁄ � < 𝑧𝑧, where 

ℰ𝑠𝑠(𝜁𝜁−1) 𝜁𝜁⁄ (𝑧̂𝑧) = 0 ⟺
𝑧̂𝑧𝜁𝜁′(𝑧̂𝑧) 
𝜁𝜁(𝑧̂𝑧) = [𝜁𝜁(𝑧̂𝑧) − 1]2 ⟺ ℰℓ �

𝜓𝜓�
𝐴𝐴
� = 0 ⟺ 𝜌𝜌�

𝜓𝜓�
𝐴𝐴
�𝜎𝜎 �

𝜓𝜓�
𝐴𝐴
� = 1. 

 
38If 𝐴𝐴 declines due to a higher 𝐿𝐿, the full impact of a higher 𝐿𝐿 on the revenue is captured by a combination of the 
parallel upward shift (the direct effect) and the parallel leftward shift (the indirect effect of a lower 𝐴𝐴). Again, the 
positive direct effect is uniform across firms, while the negative indirect effect is disproportionately smaller for low-
𝜓𝜓 firms under A2 and the weak A3. In Proposition 7b, it will be shown that the combined effect leads to a clockwise 
rotation of the graph, as depicted in Figure 3a, generating the Matthew effect in revenue. Unlike the case of the 
profit under A2, however, the pivot point for the revenue under A2 and the weak A3 may be above the cutoff 𝜓𝜓𝑐𝑐. If 
so, all firms below the cutoff would experience an increase in their revenue. In Proposition 7b, we manage to rule 
out this possibility for a sufficiently small 𝐹𝐹. 
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Figure 3c illustrates Propositions 3c and 4 by plotting the log-employment as a function of the 

log-marginal cost, which is not only strictly concave (Proposition 3c) but also hump-shaped 

(Proposition 4).  Thus, there are three generic equilibrium configurations; all firms are below the 

peak if 𝜓𝜓𝑐𝑐 < 𝜓𝜓�, firms are on both sides of the peak if 𝜓𝜓 < 𝜓𝜓� < 𝜓𝜓𝑐𝑐, or all firms are above the 

peak if 𝜓𝜓� < 𝜓𝜓 . The following corollary shows the underlying condition for each of these three 

cases, whose derivation is straightforward and hence omitted.  

Corollary of Proposition 4:  Employments across active firms are  

• increasing in 𝜓𝜓 if 𝜓𝜓𝑐𝑐 < 𝜓𝜓� ⟺ 𝐹𝐹 𝐿𝐿⁄ = 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) > 𝜋𝜋�𝜓𝜓� 𝐴𝐴⁄ � = 𝜋𝜋�𝑍𝑍−1(𝑧̂𝑧)�;  

• hump-shaped in 𝜓𝜓 if 𝜓𝜓 < 𝜓𝜓� < 𝜓𝜓𝑐𝑐 ⟺ 𝐹𝐹 𝐿𝐿⁄ < 𝜋𝜋�𝜓𝜓� 𝐴𝐴⁄ � = 𝜋𝜋�𝑍𝑍−1(𝑧̂𝑧)� & 𝐴𝐴 > 𝜓𝜓 𝑍𝑍−1(𝑧̂𝑧)⁄ . 

• decreasing in 𝜓𝜓, if 𝜓𝜓� < 𝜓𝜓 ⟺ 𝐴𝐴 < 𝜓𝜓 𝑍𝑍−1(𝑧̂𝑧)⁄ , which is possible only if 𝜓𝜓 > 0. 

In the first case, the employments are inversely related to productivity across all active firms.  

This occurs if 𝐹𝐹 𝐿𝐿⁄ > 𝜋𝜋�𝑍𝑍−1(𝑧̂𝑧)�, i.e., when the overhead is high enough relative to market size. 

In the second case, the employments are inversely related among the relatively productive firms. 

In the third case, the employments are positively related to firm productivity. This can occur only 

if 𝜓𝜓 > 0.  

Figure 3c also depicts the effect of a decline in 𝐴𝐴 by a parallel leftward shift of the graph, 

and that of a higher 𝐿𝐿 by a parallel upward shift of the graph. Due to its hump-shape, a decline in 

𝐴𝐴 alone causes a crossing of the graphs before and after the change. Thus, the employments of 

low-𝜓𝜓 firms go up due to more competitive pressures, a lower 𝐴𝐴, even if market size is 

unchanged.39 This never happens for the profit and revenue; a lower 𝐴𝐴, always reduces the profit 

and revenue for all firms, unless it is caused by an increase in market size. 

For the pass-through rate function, we prove in Appendix C.2., 

Proposition 5: Suppose that A2 and the strong A3 hold, so that 0 < 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) < 1 and 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is 

strictly increasing. Then, 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is strictly log-submodular for all 𝜓𝜓 𝐴𝐴⁄ < 𝑧𝑧 with a sufficiently 

small 𝑧𝑧. 

 
39This occurs whenever ℓ(𝜓𝜓 𝐴𝐴⁄ ) is hump-shaped, for which A2 and the weak A3 is a sufficient but not a necessary 
condition. Generalized Tranlog in Appendix D.1. offers such an example for 𝜂𝜂 < 1. 
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Figure 3d illustrates Proposition 5. It states that, under the strong A3, a lower 𝐴𝐴 (more 

competitive pressures) causes a proportionately smaller increase in the pass-through rate for 

lower-𝜓𝜓 firms for a sufficiently small 𝑧𝑧 > 0. 

 

5.  Melitz under H.S.A.: General Equilibrium Comparative Statics  

In Section 4, we studied how a change in competitive pressures, 𝐴𝐴, an endogenous 

variable, has differential effects on heterogeneous firms without specifying underlying 

exogenous shocks that cause it. We now study the general equilibrium effects of exogenous 

shocks to the entry cost 𝐹𝐹𝑒𝑒 , the overhead 𝐹𝐹, and market size 𝐿𝐿.  The recursive structure of the 

model allows us to proceed in two steps. First, we study the effects on competitive pressures, 𝐴𝐴 

and the cutoff, 𝜓𝜓𝑐𝑐 , in section 5.1. and explore some of the implications in sections 5.2 and 5.3. 

Then, we study the effects on 𝑀𝑀 and 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) in section 5.4.  Finally, we consider the limit case, 

𝐹𝐹 → 0, where the cutoff firms are those that charge the choke price.  

5.1.  General Equilibrium Effects of 𝑭𝑭𝒆𝒆, 𝑭𝑭, and 𝑳𝑳 on 𝝍𝝍𝒄𝒄, 𝝍𝝍𝒄𝒄 𝑨𝑨⁄  and 𝑨𝑨 

Recall that the equilibrium values of 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) and 𝜓𝜓𝑐𝑐 are uniquely determined by eq.(5) and 

eq.(6), as 𝐶𝐶2-functions of 𝐹𝐹𝑒𝑒 𝐿𝐿⁄  and 𝐹𝐹 𝐿𝐿⁄ .  By totally differentiating eq.(5) and eq.(6), 

Proposition 6: 

�
𝑑𝑑 ln𝐴𝐴

𝑑𝑑 ln𝜓𝜓𝑐𝑐
� =

𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) �

1 − 𝑓𝑓𝑥𝑥 𝑓𝑓𝑥𝑥

1 − 𝑓𝑓𝑥𝑥 𝑓𝑓𝑥𝑥 − 𝛿𝛿
� �
𝑑𝑑 ln(𝐹𝐹𝑒𝑒 𝐿𝐿⁄ )

𝑑𝑑 ln(𝐹𝐹 𝐿𝐿⁄ )
�, 

where  

 
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) =

1
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

= {𝔼𝔼𝑟𝑟[𝜇𝜇−1]}−1 − 1 = 𝔼𝔼ℓ(𝜇𝜇)− 1 > 0 

is the average profit/the average labor cost ratio among the active firms;   

𝑓𝑓𝑥𝑥 ≡
𝐹𝐹𝐺𝐺(𝜓𝜓𝑐𝑐)

𝐹𝐹𝑒𝑒 + 𝐹𝐹𝐺𝐺(𝜓𝜓𝑐𝑐) =
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

 𝔼𝔼1(𝜋𝜋) < 1 

is the share of the overhead in the total expected fixed cost, which is equal to the profit of the 
cut-off firm relative to the average profit among the active firms; and  

𝛿𝛿 ≡
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) − 1

=
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝔼𝔼1(ℓ)
𝔼𝔼1(𝜋𝜋) ≡ 𝑓𝑓𝑥𝑥

𝔼𝔼1(ℓ)
ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) > 0 

is the profit/labor cost ratio of the cut-off firm to the average profit/the average labor cost ratio 
among the active firms. 

The derivation is straightforward and hence omitted. To summarize the qualitative impacts 

Corollary of Proposition 6: 
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6a (Entry Cost):  𝑑𝑑 ln𝐴𝐴 
𝑑𝑑 ln𝐹𝐹𝑒𝑒

=  𝑑𝑑 ln𝜓𝜓𝑐𝑐 
𝑑𝑑 ln𝐹𝐹𝑒𝑒

= 𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ)

(1 − 𝑓𝑓𝑥𝑥) > 0; 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 
𝑑𝑑 ln𝐹𝐹𝑒𝑒

= 0 

6b (Market Size): 𝑑𝑑 ln𝐴𝐴 
𝑑𝑑 ln 𝐿𝐿

= − 𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) < 0; 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 

𝑑𝑑 ln 𝐿𝐿
= 𝔼𝔼1(𝜋𝜋)

 𝔼𝔼1(ℓ)𝛿𝛿 > 0; 𝑑𝑑 ln𝜓𝜓𝑐𝑐 
𝑑𝑑 ln 𝐿𝐿

= 𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ)

(𝛿𝛿 − 1) ⋛

0 ⇔ 𝔼𝔼𝜋𝜋(𝜎𝜎) ⋛ 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ). In particular, 𝑑𝑑 ln𝜓𝜓𝑐𝑐 
𝑑𝑑 ln 𝐿𝐿

< 0 holds globally if 𝜎𝜎′(∙) > 0, i.e., under A2. 

6c (Overhead Cost): 𝑑𝑑 ln𝐴𝐴 
𝑑𝑑 ln𝐹𝐹

= 𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ)𝑓𝑓𝑥𝑥 > 0; 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 

𝑑𝑑 ln𝐹𝐹
= − 𝔼𝔼1(𝜋𝜋)

 𝔼𝔼1(ℓ)𝛿𝛿 < 0; 𝑑𝑑 ln𝜓𝜓𝑐𝑐 
𝑑𝑑 ln𝐹𝐹

= 𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) (𝑓𝑓𝑥𝑥 −

𝛿𝛿) ⋛ 0 ⇔ ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) ⋛ 𝔼𝔼1(ℓ). In particular, 𝑑𝑑 ln𝜓𝜓𝑐𝑐 
𝑑𝑑 ln𝐹𝐹

> 0 holds globally if ℓ′(∙) > 0. 

Figures 4a-4c illustrate Corollary of Proposition 6.  

Figure 4a shows the effects of a decline in 𝑭𝑭𝒆𝒆. A smaller entry cost makes the entry more 

attractive, while keeping an incentive to stay in the market after the entry unaffected. Thus, it 

shifts the free entry condition down and to the left, while keeping the cutoff rule unchanged. 

Hence, it leads to a decline in both 𝜓𝜓𝑐𝑐 and 𝐴𝐴 at the same rate, resulting in more competitive 

pressures and a tougher selection.   

Figure 4b shows the effects of an increase in 𝑳𝑳. A larger market size has two different 

effects. On one hand, it makes the entry more attractive, thus shifting the free entry condition 

down and to the left.  On the other hand, it gives more incentive to stay in the market after the 

entry at each level of competitive pressures, thus rotating the cutoff rule counter-clockwise. The 

intersection thus unambiguously moves to the left, causing a smaller 𝐴𝐴. To determine the impact 

on 𝜓𝜓𝑐𝑐, which depends on the relative magnitudes of the two effects, eliminate 𝐿𝐿 from eq.(5) and 

eq.(6) to obtain: 

� �
𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

− 1� 𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
=
𝐹𝐹𝑒𝑒
𝐹𝐹

 . 

As 𝐿𝐿 changes, the intersection moves along the locus defined by this equation. Its LHS is 

globally strictly increasing in 𝜓𝜓𝑐𝑐 . It is also strictly decreasing in 𝐴𝐴, wherever 𝔼𝔼𝜋𝜋(𝜎𝜎) < 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 

holds:40 that is, whenever the profit-weighted average price elasticity across the active firms is 

lower than the price elasticity at the cutoff firm. This condition holds globally, if 𝜎𝜎(∙) is strictly 

increasing, i.e., A2, in which case the locus is globally upward-sloping, as depicted by the dotted 

 
40 This can be verified by differentiating the LHS with respect to 𝐴𝐴 and making use of ℰ𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) = 1 − 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ). 
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line in Figure 4b. Thus, under A2, a higher 𝐿𝐿 always causes a decline in both 𝜓𝜓𝑐𝑐 and 𝐴𝐴, with 

𝜓𝜓𝑐𝑐 𝐴𝐴⁄  going up.41 

Figure 4c shows the effects of a decline in 𝑭𝑭: Similar to a higher 𝐿𝐿, a smaller overhead 

cost has two different effects. It not only makes the entry more attractive, thus shifting the free 

entry condition down and to the left, but also gives more incentive to stay in the market after the 

entry, thus rotating the cutoff rule counter-clockwise. The intersection thus unambiguously 

moves to the left, causing a decline in 𝐴𝐴. To determine the impact on 𝜓𝜓𝑐𝑐, eliminating 𝐹𝐹 from 

eq.(5) and eq.(6) yields: 

� �𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� − 𝜋𝜋 �

𝜓𝜓𝑐𝑐
𝐴𝐴
�� 𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
=
𝐹𝐹𝑒𝑒
𝐿𝐿

. 

As 𝐹𝐹 changes, the intersection moves along the locus defined by this equation. Its LHS is 

globally strictly increasing in 𝜓𝜓𝑐𝑐. It is also strictly decreasing in 𝐴𝐴, wherever 𝑓𝑓𝑥𝑥 > 𝛿𝛿, or 

equivalently ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) > 𝔼𝔼1(ℓ) holds.42 that is, whenever the average employment across the 

active firms is lower than the employment by the cutoff firm. This condition holds globally if 

ℓ(∙) is strictly increasing. As shown in Corollary of Proposition 4, this occurs under A2 and the 

weak A3 when the overhead cost is sufficiently large relative to market size. In this case, the 

locus is globally upward-sloping, as depicted by the dotted curve in Figure 4c.  Hence a lower F 

always causes a decline in both 𝜓𝜓𝑐𝑐 and 𝐴𝐴, with 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  going up. 

 

5.2. Market Size Effect on Profit, 𝚷𝚷𝝍𝝍 ≡ 𝝅𝝅(𝝍𝝍 𝑨𝑨⁄ )𝑳𝑳 and Revenue, 𝑹𝑹𝝍𝝍 ≡ 𝒓𝒓(𝝍𝝍 𝑨𝑨⁄ )𝑳𝑳 

 As we suggested in section 4, the full impacts of a higher 𝐿𝐿 on the profit (under A2) and 

of the revenue (under A2 and the weak A3) are captured by a combination of the parallel upward 

shift (the direct effect) and the parallel leftward shift (the indirect effect due to a lower 𝐴𝐴) of the 

graph in Figure 3a. Because the positive direct effect is uniform across firms, while the negative 

indirect effect is smaller for low-𝜓𝜓 firms, the combined effect could result in a clockwise rotation 

of the graph, such that a higher 𝐿𝐿, accompanied by a lower 𝐴𝐴, leads to an increase in the profit 
 

41 Since A2 implies the log-supermodularity of 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ), as shown in Proposition 2, 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )⁄  is strictly 
decreasing in 𝐴𝐴 for 𝜓𝜓 < 𝜓𝜓𝑐𝑐, and so is the integrand of the LHS. Under the opposite of A2, 𝜎𝜎′(∙) < 0, the locus 
would be negatively-sloped and a higher 𝐿𝐿 would lead to an increase in 𝜓𝜓𝑐𝑐 . CES is the borderline case, with the 
horizontal locus, hence a change in 𝐿𝐿 has no effect on 𝜓𝜓𝑐𝑐. 
42 This can be verified by differentiating the LHS with respect to 𝐴𝐴 and making use of (𝜓𝜓 𝐴𝐴⁄ )𝜋𝜋′(𝜓𝜓 𝐴𝐴⁄ ) =
𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )ℰ𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) = 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )[1 − 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )] = 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) − 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ) = −ℓ(𝜓𝜓 𝐴𝐴⁄ ) 



Page 30 of 78 
 

and the revenue among low-𝜓𝜓 firms. We are now ready to state this result formally in 

Propositions 7a and 7b, whose proof is in Appendix C.3. 

Proposition 7a: Under A2, there exists a unique 𝜓𝜓0 ∈ (𝜓𝜓,𝜓𝜓𝑐𝑐) such that 𝜎𝜎 �𝜓𝜓0
𝐴𝐴
� = 𝔼𝔼𝜋𝜋(𝜎𝜎)  with 

𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

> 0 ⟺ 𝜎𝜎�
𝜓𝜓
𝐴𝐴
� < 𝔼𝔼𝜋𝜋(𝜎𝜎)  for 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓0�, 

and 
𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

< 0 ⟺ 𝜎𝜎�
𝜓𝜓
𝐴𝐴
� > 𝔼𝔼𝜋𝜋(𝜎𝜎)  for 𝜓𝜓 ∈ (𝜓𝜓0,𝜓𝜓𝑐𝑐). 

 
Proposition 7b: Under A2 and the weak A3, there exists 𝜓𝜓1 > 𝜓𝜓0, such that 

𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

> 0 for 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓1�. 

Furthermore, 𝜓𝜓1 ∈ (𝜓𝜓0,𝜓𝜓𝑐𝑐) and  
𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

<  0 for 𝜓𝜓 ∈ (𝜓𝜓1,𝜓𝜓𝑐𝑐), 

for a sufficiently small 𝐹𝐹. 
Figures 5a-5c graphically put together the main implications of Propositions 2, 3, 6, and 7 

under A2 and the weak A3 for the effects on the log-markup rates, the log-profits, and the log- 

revenues, of more competitive pressures (a lower 𝐴𝐴) and a tougher selection (a lower 𝜓𝜓𝑐𝑐), when 

they are caused by a decline in 𝐹𝐹𝑒𝑒, an increase in 𝐿𝐿 and a decline in 𝐹𝐹 (with ℓ′(∙) > 0). In all 

three cases, the log-profit is decreasing, and concave in the log-marginal cost due to A2 

(Proposition 2) and the log-markup rate (log-revenue) is decreasing, and convex (concave) in the 

log-marginal cost due to A2 and the weak A3 (Proposition 3).       

 

5.3. The Composition Effect:  Average Markup and Pass-Through Rates and TFP 

 In all three cases illustrated in Figures 4a-4c and Figures 5a-5c, the shocks that cause a 

decline in 𝐴𝐴, more competitive pressures, also cause a decline in 𝜓𝜓𝑐𝑐, a tougher selection. This 

creates non-trivial composition effects. 

• Under A2, a lower 𝐴𝐴 causes all surviving firms to reduce their markup rate 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ). 

However, it also causes high-𝜓𝜓 firms with lower 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) to shrink and even to exit. 

• Under strong A3, a lower 𝐴𝐴 causes all surviving firms to increase their pass-through rates 

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ). However, it also causes high-𝜓𝜓 firms with higher 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) to shrink and even to 

exit. 
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Due to this composition effect, the average markup and pass-through rates can go in either 

direction. Propositions 8a and 8b identify some conditions that determine the direction of the 

changes in the average values in the case where the shock keeps 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  unchanged.43 The proof is 

in Appendix C.4. 

Proposition 8a. Assume that ℰ𝑔𝑔′ (⋅) does not change its sign and 𝜓𝜓 = 0. Consider a shock, such 
that 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  remains constant. Then, for any weight function, w(𝜓𝜓 𝐴𝐴⁄ ), the weighted generalized 
mean of any monotone 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) > 0,  

𝐼𝐼 ≡ ℳ−1 �𝔼𝔼𝑤𝑤�ℳ(𝑓𝑓)�� 
with a monotone transformation, ℳ:ℝ+ → ℝ, satisfies 

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

� = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓′(⋅)ℰ𝑔𝑔′ (⋅)�. 

Moreover, if ℰ𝑔𝑔′ (⋅) = 0, 𝑑𝑑 ln 𝐼𝐼 𝑑𝑑 ln𝐴𝐴⁄ = 0 for any 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ), monotonic or not. 
Note that this result holds for any generalized mean of a monotone function 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) > 0,  

including the arithmetic mean with ℳ(𝑓𝑓) = 𝑓𝑓, the geometric mean with ℳ(𝑓𝑓) = ln 𝑓𝑓, and the 

harmonic mean with ℳ(𝑓𝑓) = 1/𝑓𝑓. Moreover, it holds for any weighted generalized mean, as 

long as the weight used is a function of 𝜓𝜓 𝐴𝐴⁄ , such as the revenue 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ), the profit 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ), or 

even the employment ℓ(𝜓𝜓 𝐴𝐴⁄ ), which may not be monotone.44 Proposition 8a also states that a 

decline in 𝐹𝐹𝑒𝑒 under Pareto-productivity, 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
 offers a knife-edge case, where any 

w(∙)-weighted generalized mean of even a nonmonotonic 𝑓𝑓(∙) remain unchanged.  

 By setting 𝜇𝜇(⋅) = 𝑓𝑓(⋅) under A2, 𝜇𝜇′(⋅) < 0, Proposition 8a tells us that a lower 𝐴𝐴, due to 

a decline in 𝐹𝐹𝑒𝑒, causes any w(∙)-weighted generalized mean of the markup rate to increase if 

ℰ𝑔𝑔′ (⋅) > 0, and to decline if ℰ𝑔𝑔′ (⋅) < 0, with the Pareto case, ℰ𝑔𝑔′ (⋅) =  0, being the knife-edge. 

Likewise, by setting 𝜌𝜌(⋅) = 𝑓𝑓(⋅) under the strong A3, 𝜌𝜌′(⋅) > 0, we conclude that a lower 𝐴𝐴, due 

to a decline in 𝐹𝐹𝑒𝑒, causes any w(∙)-weighted generalized mean of the pass-through rate to decline 

if ℰ𝑔𝑔′ (⋅) > 0, and to increase if ℰ𝑔𝑔′ (⋅) < 0. To grasp the intuition, recall Lemma 2, which states 

that, when ℰ𝑔𝑔′ (⋅) > 0, a lower 𝜓𝜓𝑐𝑐  (a tougher selection) shifts the distribution of 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄  to the 

left in the MLR ordering. Thus, among the surviving firms, the distribution becomes more 

skewed towards low-𝜓𝜓 firms, which have higher markup and lower pass-through rates. This 
 

43Examples include a decline in 𝐹𝐹𝑒𝑒, as well as a decline in 𝐿𝐿 for the limit case of 𝐹𝐹 → 0 with 𝑧𝑧̅ < ∞, discussed in 
section 5.5. Moreover, Proposition 8a and Proposition 8b offer some conditions for the direction of the change for 
any combination of the shocks, as long as its effect on 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  is small enough. 
44Of course, which weighted generalized mean is used matters both conceptually and quantitatively; as stressed by 
Edmond, Midrigan, and Xu (2023). 
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makes the composition effect to dominate, causing the average markup rate to go up and the 

average pass-through rate to go down under more competitive pressures, despite that each 

surviving firm responds by reducing its markup rate and increasing its pass-through rate.45 

Interestingly, according to the calibration by Baqaee, Farhi, and Sangani (2023), which showed 

the evidence for A2 and strong A3, it can be also shown that ℰ𝑔𝑔′ (𝜓𝜓) > 0 holds with a Pareto tail, 

lim𝜓𝜓→0ℰ𝑔𝑔′ (𝜓𝜓) = 0. This suggests that, more competitive pressures, through the composition 

effect, might have caused the recent rise in the average markup rate and the decline in the 

average pass-through rate.46 At least, such empirical findings should not be interpreted as the 

prima-facie evidence for less competitive pressures.  

 As discussed in Section 2.5, the aggregate labor cost share is the reciprocal of the 

revenue-weighted harmonic mean of the markup rates and their employment-weighted arithmetic 

mean. The above result thus implies that, under A2, a lower 𝐴𝐴, due to a decline in 𝐹𝐹𝑒𝑒, causes the 

aggregate labor cost share to decline and the aggregate profit share to increase if ℰ𝑔𝑔′ (⋅) > 0. It 

has the opposite effect if ℰ𝑔𝑔′ (⋅) < 0 and no effect if ℰ𝑔𝑔′ (⋅) =  0. 

Proposition 8a can also be used to find a sufficient condition under which more 

competitive pressures improves TFP. Again, the proof is in Appendix C.4. 

Corollary of Proposition 8a: Assume 𝜓𝜓 = 0, and neither 𝜁𝜁′(⋅) nor ℰ𝑔𝑔′ (⋅) change the signs. 
Consider a shock, such that 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  remains unchanged. Then,  

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

� = 𝑠𝑠𝑠𝑠𝑠𝑠�𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅)�. 

In particular, under 𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅) ≥ 0, a lower 𝐴𝐴 implies, 

𝑑𝑑(𝑋𝑋 𝐿𝐿⁄ )
(𝑋𝑋 𝐿𝐿⁄ ) = −

𝑑𝑑𝑑𝑑
𝑃𝑃
≥ −

𝑑𝑑𝑑𝑑
𝐴𝐴

> 0, 

where the equality holds iff 𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅) = 0. 

 Recall that, under CES, 𝐴𝐴 𝑃𝑃⁄  is constant, so that more competitive pressures, a lower 𝐴𝐴, 

always implies a lower 𝑃𝑃, and hence higher TFP. This corollary shows that departing from CES 

 
45This calibration finding is not in their paper. But, in response to our inquiry, the authors kindly computed and sent 
us the plot that shows that the elasticity of the productivity density function, ℰ𝑓𝑓(𝜑𝜑), is an increasing function with a 
Pareto tail, thereby confirming this finding. 
46Indeed, Autor et.al. (2020) and De Loecker, Eeckhout, and Unger (2020) pointed out that much of the recent rise 
in the average markup is due to reallocation from the low markup firms to the high markup firms.  
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in the direction of 𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅) > 0, 47 leads to −𝑑𝑑𝑑𝑑 𝑃𝑃⁄ > −𝑑𝑑𝑑𝑑 𝐴𝐴 > 0⁄ , thus magnifying the 

positive impact of more competitive pressures on TFP. On the other hand, a (small) departure 

from CES in the direction of 𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅) < 0, 48 leads to 0 < −𝑑𝑑𝑑𝑑 𝑃𝑃⁄ < −𝑑𝑑𝑑𝑑 𝐴𝐴⁄ , thus diminishing 

the positive impact on TFP.49  The corollary also shows that under Pareto, −𝑑𝑑𝑑𝑑 𝑃𝑃⁄ = −𝑑𝑑𝑑𝑑 𝐴𝐴,⁄  so 

that more competitive pressures always lead to higher TFP. 

Note that the conditions in Proposition 8a are stated in terms of the sign of ℰ𝑔𝑔′ (⋅). For the 

weaker conditions using the signs of ℰ𝐺𝐺′ (⋅), we have the following result on the average markup 

rate weighted by the monotonically increasing employment, ℓ(𝜓𝜓 𝐴𝐴⁄ ). 

Proposition 8b. Assume that A2 holds, 𝜓𝜓 = 0, and ℓ(𝜓𝜓 𝐴𝐴⁄ ) is increasing in 𝜓𝜓 𝐴𝐴⁄  for all 𝜓𝜓 𝐴𝐴⁄ ∈

(0,𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ). Consider a shock, which causes a proportional decline in 𝐴𝐴 and 𝜓𝜓𝑐𝑐, so that 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  

remains constant. Then, if ℰ𝐺𝐺′ (⋅) > 0, the average inverse markup rate = the aggregate labor 

cost share,   
𝔼𝔼1(ℓ)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜇𝜇
� = 1 − �𝔼𝔼𝜋𝜋 �

𝜇𝜇
𝜇𝜇 − 1

��
−1

=
1

𝔼𝔼ℓ(𝜇𝜇), 

decreases and the average inverse price elasticity = the aggregate profit share,  
𝔼𝔼1(𝜋𝜋)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜎𝜎
� =

1
𝔼𝔼𝜋𝜋(𝜎𝜎) = 1 − �𝔼𝔼ℓ �

𝜎𝜎
𝜎𝜎 − 1

��
−1

, 

increases; if ℰ𝐺𝐺′ (⋅) < 0, they move in the opposite direction; and if ℰ𝐺𝐺′ (⋅) = 0, they remain 

constant. 

 

5.4.  Comparative Statics on 𝑴𝑴,𝑴𝑴𝑴𝑴(𝝍𝝍𝒄𝒄), 𝑴𝑴 𝑳𝑳⁄ ,  𝑴𝑴𝑴𝑴(𝝍𝝍𝒄𝒄) 𝑳𝑳⁄  

The next proposition looks at the effects on the mass of entrants as well as the mass of active 

firms. The proof is in Appendix C.5. 

Proposition 9a (The Effects of 𝐹𝐹𝑒𝑒 on 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)) 

 
47 For example, A2, 𝜁𝜁′(⋅) > 0, with ℰ𝑔𝑔′ (⋅) > 0 as in the calibration by Baqaee, Farhi, and Sangani (2023).  
48 For example, A2, 𝜁𝜁′(⋅) > 0, with ℰ𝑔𝑔′ (⋅) < 0 as in Fréchet, Weibull, and Lognormal. 
49 We do not know whether a large enough departure from CES in the direction of 𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅) < 0 could lead to 
−𝑑𝑑𝑑𝑑 𝑃𝑃⁄ < 0 < −𝑑𝑑𝑑𝑑 𝐴𝐴.⁄  More generally, we do not know whether −𝑑𝑑𝑑𝑑 𝑃𝑃⁄ < 0 < −𝑑𝑑𝑑𝑑 𝐴𝐴⁄  is possible when more 
competitive pressures are caused by an increase in 𝐿𝐿 or by a decline in 𝐹𝐹. The calibration by Baqaee, Farhi, and 
Sangani (2023) shows that a higher 𝐿𝐿 leads to higher TFP, much of which is due to what they call the Darwinian 
effect, the reallocation from high-𝜓𝜓 firms to low-𝜓𝜓 firms. 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝐹𝐹𝑒𝑒

< 0;  ℰ𝐺𝐺′ (𝜓𝜓) ⋛ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝐹𝐹𝑒𝑒
⋛ 0 

Proposition 9b (The Effects of 𝐿𝐿 on 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)): Under A2, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0;   ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝑑𝑑
> 0. 

Proposition 9c (The Effects of 𝐿𝐿 on 𝑀𝑀 𝐿𝐿⁄   and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) 𝐿𝐿⁄ ): Under A2, 

𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
⟹

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑀𝑀
𝐿𝐿
� > 0; ℰ𝐺𝐺′ (𝜓𝜓) ≥ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)

𝐿𝐿
� < 0. 

Proposition 9d (The Effects of 𝐹𝐹 on 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)): If ℓ′(∙) > 0, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0;    ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝑑𝑑
< 0. 

Proposition 9 suggests that the results on the impacts of the masses of firms usually depend on 

whether ℰ𝐺𝐺(𝜓𝜓) is increasing or decreasing, with ℰ𝐺𝐺′ (𝜓𝜓) = 0,  power-distributed marginal costs, 

i.e., Pareto-distributed productivity, being often the knife-edge case.  

 

5.5. The Limit Case of 𝑭𝑭 → 𝟎𝟎 with 𝒛𝒛� < ∞. 

Before proceeding to a multi-market extension, we briefly look at a limit case, 𝐹𝐹 → 0, 

with 𝑧𝑧̅ < ∞.  In this limit case, there is no overhead cost and the cutoff firms supply with zero 

markup, i.e., at that marginal cost equal to the choke price, 𝜓𝜓𝑐𝑐 = 𝑧𝑧̅𝐴𝐴.50 The equilibrium can be 

described by eq.(5) and eq.(6), which now become simply: 

Cutoff Rule:  𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴
� = 0 ⟺

𝜓𝜓𝑐𝑐
𝐴𝐴

= 𝑍𝑍 �
𝜓𝜓𝑐𝑐
𝐴𝐴
� = 𝑧𝑧̅ = 𝜋𝜋−1(0) 

Free Entry Condition: 𝐹𝐹𝑒𝑒
𝐿𝐿

= � 𝜋𝜋 �𝑧𝑧̅
𝜓𝜓
𝜓𝜓𝑐𝑐
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
= � 𝜋𝜋 �

𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝑧̅𝑧𝐴𝐴

𝜓𝜓
. 

Notice that the cutoff rule alone determines 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝑧𝑧̅.  And the free-entry condition uniquely 

determines 𝜓𝜓𝑐𝑐 = 𝑧𝑧̅𝐴𝐴 as 𝐶𝐶2 functions of 𝐹𝐹𝑒𝑒 𝐿𝐿⁄  with the interior solution, 0 < 𝐺𝐺(𝜓𝜓𝑐𝑐) < 1, 

guaranteed for  

 
50Although one of the advantages of the Melitz model under H.S.A. is that it is tractable with 𝐹𝐹 > 0, we look at this 
case because some existing studies, e.g., Melitz and Ottaviano (2008) and Arkolakis et.al. (2019), assume the choke 
price and 𝐹𝐹 = 0. 
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0 <
𝐹𝐹𝑒𝑒
𝐿𝐿

< � 𝜋𝜋�𝑧𝑧̅
𝜓𝜓
𝜓𝜓�
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓�

𝜓𝜓
. 

Simple algebra can verify that  

𝑑𝑑𝜓𝜓𝑐𝑐
𝜓𝜓𝑐𝑐

=
𝑑𝑑𝑑𝑑
𝐴𝐴

=
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) �

𝑑𝑑𝐹𝐹𝑒𝑒
𝐹𝐹𝑒𝑒

−
𝑑𝑑𝑑𝑑
𝐿𝐿
�, 

which can be also obtained from Proposition 6 by setting 𝑓𝑓𝑥𝑥 = 𝛿𝛿 = 0.  Thus, a decline in 𝐹𝐹𝑒𝑒 𝐿𝐿⁄  

causes both 𝜓𝜓𝑐𝑐 and 𝐴𝐴 to decline at the same rate, with 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  unchanged, as shown in Figure 6a.  

Because shocks to 𝐹𝐹𝑒𝑒 and 𝐿𝐿 never affect 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝑧𝑧̅, Proposition 8a and 8b can be applied in this 

case.  One could also show that  

𝑑𝑑𝑑𝑑
𝑑𝑑(𝐹𝐹𝑒𝑒 𝐿𝐿⁄ ) < 0;  ℰ𝐺𝐺′ (𝜓𝜓) ⋚ 0 ⟺

𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]
𝑑𝑑(𝐹𝐹𝑒𝑒 𝐿𝐿⁄ ) ⋚ 0, 

whose proof is omitted because it follows the same line with the proof of Proposition 9a and 9b.  

Figure 6b illustrates the impacts on the markup rate, the profit and the revenue. While a 

decline in 𝐹𝐹𝑒𝑒 causes the profit and the revenue of all surviving firms to decline with 

proportionately larger impacts on low-𝜓𝜓 firms, an increase in 𝐿𝐿 causes the profit and revenue to 

go up among low-𝜓𝜓 firms. The profit and revenue always go down among high-𝜓𝜓 firms, with the 

clockwise rotation of the profit and revenue schedule, whose pivot point (𝜓𝜓0 for the profit; 𝜓𝜓1for 

the revenue) is always located below the cutoff 𝜓𝜓𝑐𝑐, because the cutoff firms always earn zero 

revenue and profit. 

 

6.  Sorting of Heterogeneous Firms: A Multi-Market Extension 

6.1. A Multi-Market Setting 

We now extend the model to have 𝐽𝐽 ≥ 2 markets, indexed as 𝑗𝑗 = 1,2, … , 𝐽𝐽, from which 

firms need to choose. The structure of each market is as before; it produces a single consumption 

good with the H.S.A. technology to assemble market-specific differentiated intermediate inputs 

supplied by monopolistically competitive producers. The only source of the heterogeneity across 

markets is market size. The aggregate expenditure for good-𝑗𝑗 is 𝐿𝐿𝑗𝑗, with ∑ 𝐿𝐿𝑗𝑗
𝐽𝐽
𝑗𝑗=1 = 𝐿𝐿, so that 

𝛽𝛽𝑗𝑗 = 𝐿𝐿𝑗𝑗 𝐿𝐿⁄ > 0 is its expenditure share. One possible interpretation is that the representative 

household has the Cobb-Douglas preferences over 𝐽𝐽 consumption goods, 𝑈𝑈 = ∑ 𝛽𝛽𝑗𝑗 ln𝐶𝐶𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , to be 
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maximized subject to the budget constraint, ∑ 𝑃𝑃𝑗𝑗𝐶𝐶𝑗𝑗
𝐽𝐽
𝑗𝑗=1 = 𝐿𝐿.  Another possible interpretation is 

that there are 𝐽𝐽 different types of households, with 𝛽𝛽𝑗𝑗 = 𝐿𝐿𝑗𝑗 𝐿𝐿⁄  being the fraction of type-𝑗𝑗 

households who consume only good-𝑗𝑗. Here, the types of consumers can be based on the 

difference in their tastes or their locations. With their expenditure shares being the only 

exogenous source of heterogeneity, we index the markets such that 𝐿𝐿1 > 𝐿𝐿2 > ⋯ > 𝐿𝐿𝐽𝐽 > 0, 

without further loss of generality. To keep it simple, we assume that the wage rate is common 

across the markets so that it can be normalized to one.51 

As before, each entrant must pay the entry cost, 𝐹𝐹𝑒𝑒 > 0, to draw its marginal cost, 𝜓𝜓.  

Then, after learning its marginal cost, they decide which market to enter and produce with an 

overhead cost, 𝐹𝐹 > 0, or exit without producing. If 𝜓𝜓-firms choose not to exit, they would enter 

the market that gives the highest profit to earn 

Π𝜓𝜓 = max�Π1𝜓𝜓, … ,Π𝐽𝐽𝐽𝐽�, 

where 

Π𝑗𝑗𝑗𝑗 ≡
𝑠𝑠 �𝑍𝑍�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ ��

𝜁𝜁 �𝑍𝑍�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ ��
𝐿𝐿𝑗𝑗 ≡

𝑟𝑟�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �
𝜎𝜎�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �

𝐿𝐿𝑗𝑗 = 𝜋𝜋 �
𝜓𝜓
𝐴𝐴𝑗𝑗
� 𝐿𝐿𝑗𝑗 

is the profit earned by 𝜓𝜓-firms by entering market-𝑗𝑗 and 𝐴𝐴𝑗𝑗 is the inverse measure of competitive 

pressures in market-𝑗𝑗.  The free entry condition is then 

� max�Π𝜓𝜓 − 𝐹𝐹, 0� 𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓

𝜓𝜓
= 𝐹𝐹𝑒𝑒 . 

6.2. Positive Assortative Matching Between Firms and Markets under A2 

We now show a positive assortative matching between firms and markets under A2 in the 

sense that more productive firms self-select into larger markets. Specifically, we are now going 

to show that there is a sequence of monotonically increasing cutoffs, 𝜓𝜓 = 𝜓𝜓0 < 𝜓𝜓1 < 𝜓𝜓2 < ⋯ <

𝜓𝜓𝐽𝐽 < 𝜓𝜓, such that firms with 𝜓𝜓 ∈ (𝜓𝜓𝑗𝑗−1,𝜓𝜓𝑗𝑗) enter market-𝑗𝑗, and those with 𝜓𝜓 ∈ (𝜓𝜓𝐽𝐽,𝜓𝜓) do not 

enter any market.   

 
51This poses no problem if the 𝐽𝐽 markets are not spatially separated. Even if they are spatially separated, the common 
wage rate can be justified in the presence of e-commute or in the presence of the outside sector which produces the 
competitive good that can be traded costlessly across the markets, as in the home market effect models of Helpman 
and Krugman (1985, Ch.10.4) and of Matsuyama (2017). 
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First, we prove that 𝐴𝐴𝑗𝑗 is strictly monotone in 𝑗𝑗. Suppose the contrary, so that, for some 𝑗𝑗,  

𝐿𝐿𝑗𝑗 > 𝐿𝐿𝑗𝑗+1 and 𝐴𝐴𝑗𝑗 ≥ 𝐴𝐴𝑗𝑗+1. Because 𝜋𝜋(∙) is strictly decreasing, this would mean that, for all 𝜓𝜓,  

𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � ≥ 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ � ⟹ Π𝑗𝑗𝑗𝑗 = 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗 > 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1 = Π(𝑗𝑗+1)𝜓𝜓 

which would imply that no firm would enter market-(𝑗𝑗 + 1), and hence 𝐴𝐴𝑗𝑗+1 = ∞, a 

contradiction.  Thus, 0 < 𝐴𝐴1 < 𝐴𝐴2 < ⋯ < 𝐴𝐴𝐽𝐽 < ∞, and 𝜋𝜋(𝜓𝜓 𝐴𝐴1⁄ ) < 𝜋𝜋(𝜓𝜓 𝐴𝐴2⁄ ) < ⋯ < 𝜋𝜋�𝜓𝜓 𝐴𝐴𝐽𝐽⁄ � 

for all 𝜓𝜓. 

Second, for 𝑗𝑗 = 1,2, … , 𝐽𝐽 − 1, consider the following ratio: 

Π𝑗𝑗𝑗𝑗
Π(𝑗𝑗+1)𝜓𝜓

=
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1
. 

As a function of 𝜓𝜓, this ratio has to be greater than one for some 𝜓𝜓 and less than one for other 𝜓𝜓, 

to ensure that a positive measure of firms would enter both market-𝑗𝑗 and market-(𝑗𝑗 + 1).  Since 

A2 implies that 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) is strictly log-supermodular in 𝜓𝜓 and 𝐴𝐴 (Proposition 2c), this ratio is 

strictly decreasing in 𝜓𝜓 because 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1. Thus, there exists 𝜓𝜓𝑗𝑗 such that 

𝜓𝜓 ⋚ 𝜓𝜓𝑗𝑗 ⟺
Π𝑗𝑗𝑗𝑗

Π(𝑗𝑗+1)𝜓𝜓
=

𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1

⋛
𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1
≡ 1. 

In other words, all firms with 𝜓𝜓 < 𝜓𝜓𝑗𝑗  strictly prefer entering market-𝑗𝑗 to entering market-

(𝑗𝑗 + 1), all firms with 𝜓𝜓 > 𝜓𝜓𝑗𝑗  strictly prefer entering market-(𝑗𝑗 + 1) to entering market-𝑗𝑗, and all 

firms with 𝜓𝜓 = 𝜓𝜓𝑗𝑗 are indifferent between the two markets.  For 𝑗𝑗 = 𝐽𝐽, let 𝜓𝜓𝐽𝐽 be defined by 

𝜋𝜋�𝜓𝜓𝐽𝐽 𝐴𝐴𝐽𝐽⁄ �𝐿𝐿𝐽𝐽 ≡ 𝐹𝐹.  Then, only the firms with 𝜓𝜓 ∈ [𝜓𝜓𝑗𝑗−1,𝜓𝜓𝑗𝑗] enter market-𝑗𝑗. This also means that 

𝜓𝜓𝑗𝑗 is strictly monotone in 𝑗𝑗, because 𝜓𝜓𝑗𝑗−1 ≥ 𝜓𝜓𝑗𝑗  would imply that a positive measure of firms 

would not enter market-𝑗𝑗, which is a contradiction. See Figure 7. Thus, the mass of the active 

firms in market-𝑗𝑗 is equal to 𝑀𝑀[𝐺𝐺(𝜓𝜓𝑗𝑗) − 𝐺𝐺(𝜓𝜓𝑗𝑗−1)], and the mass of the firms that enter and 

choose not to stay in any market is 𝑀𝑀[1 − 𝐺𝐺(𝜓𝜓𝐽𝐽)]. 

The free entry condition can now be rewritten as:  
 

� � �𝜋𝜋�
𝜓𝜓
𝐴𝐴𝑗𝑗
� 𝐿𝐿𝑗𝑗 − 𝐹𝐹�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑗𝑗

𝜓𝜓𝑗𝑗−1

𝐽𝐽

𝑗𝑗=1
= 𝐹𝐹𝑒𝑒 

(10) 

The adding up constraint in market-𝑗𝑗 is given by: 
 

𝑀𝑀� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴𝑗𝑗
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑗𝑗

𝜓𝜓𝑗𝑗−1
= 1, 

(11) 
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where the cutoff rules are: 
 𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1
= 1, 

(12) 

for 𝑗𝑗 = 1,2, … , 𝐽𝐽 − 1, and  
 

𝜋𝜋 �
𝜓𝜓𝐽𝐽
𝐴𝐴𝐽𝐽
� 𝐿𝐿𝐽𝐽 ≡ 𝐹𝐹, 

(13) 

for 𝑗𝑗 = 𝐽𝐽.  Altogether, these 2𝐽𝐽 + 1 conditions in eqs.(10)-(13) determine 2𝐽𝐽 + 1 endogenous 

variables, which are 𝑀𝑀, �𝐴𝐴𝑗𝑗�𝑗𝑗=1
𝐽𝐽

 and �𝜓𝜓𝑗𝑗�𝑗𝑗=1
𝐽𝐽

, 0 < 𝐴𝐴1 < 𝐴𝐴2 < ⋯ < 𝐴𝐴𝐽𝐽 < ∞;  𝜓𝜓 = 𝜓𝜓0 < 𝜓𝜓1 <

𝜓𝜓2 < ⋯ < 𝜓𝜓𝐽𝐽 < 𝜓𝜓.  To summarize, 

Proposition 10: Positive Assortative Matching between Firm Productivity and Market Size 

Suppose that 𝐽𝐽 markets differ only in market size, as 𝐿𝐿1 > 𝐿𝐿2 > ⋯ > 𝐿𝐿𝐽𝐽 > 0.  In equilibrium, 

large markets are characterized by more competitive pressures, 0 < 𝐴𝐴1 < 𝐴𝐴2 < ⋯ < 𝐴𝐴𝐽𝐽 < ∞.  

And under A2, firms with 𝜓𝜓 ∈ �𝜓𝜓𝑗𝑗−1,𝜓𝜓𝑗𝑗� enter market-𝑗𝑗 for 𝑗𝑗 = 1, 2, … , 𝐽𝐽, and firms with 𝜓𝜓 ∈

�𝜓𝜓𝐽𝐽,𝜓𝜓� exit, with 𝜓𝜓 = 𝜓𝜓0 < 𝜓𝜓1 < 𝜓𝜓2 < ⋯ < 𝜓𝜓𝐽𝐽 < 𝜓𝜓, where the two strictly increasing 

sequences, �𝜓𝜓𝑗𝑗�𝑗𝑗=1
𝐽𝐽

 and �𝐴𝐴𝑗𝑗�𝑗𝑗=1
𝐽𝐽

, and 𝑀𝑀, the mass of entrant, are given by eqs.(10)-(13). 

Note that A2 is crucial for this result. Under the opposite of A2, 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) would be strictly log-

submodular in 𝜓𝜓 and 𝐴𝐴, so that 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1�  would be strictly increasing in 𝜓𝜓.  

Hence the equilibrium would feature a strictly decreasing sequence, 𝜓𝜓 = 𝜓𝜓𝐽𝐽 < ⋯ < 𝜓𝜓2 < 𝜓𝜓1 <

𝜓𝜓0 < 𝜓𝜓, such that the firms with 𝜓𝜓 ∈ (𝜓𝜓𝑗𝑗 ,𝜓𝜓𝑗𝑗−1) enter market-𝑗𝑗, and those with 𝜓𝜓 ∈ (𝜓𝜓0,𝜓𝜓,) 

exit.  Thus, there would be a negative assortative matching with more productive firms self-

selecting into smaller markets. Under CES, 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1�  is independent of 𝜓𝜓, 

hence the model does not predict any sorting. Indeed, in equilibrium, this ratio has to be equal to 

one so that all active firms would be indifferent across all markets, and the equilibrium 

distribution would be indeterminate. 

Thus, under A2, the Melitz model under H.S.A. offers a demand-side mechanism for the 

positive assortative matching between firm productivity and the city size.52 This demand-side 

 
52 Kokovin et. al. (2023) also generates a positive assortative matching through a demand-side mechanism under 
Marshall's 2nd law of demand. In contrast to our approach, they use a quasi-linear utility defined over the outside 
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mechanism complements the supply-side mechanisms studied in the literature. For example, 

what generates the positive assortative matching in Behrens, Duranton, and Robert-Nicoud 

(2014) and Gaubert (2018), both of which use CES, is the assumption on the firm technology 

that more productive firms are better at leveraging local agglomeration externalities in larger 

cities, similar to what Davis and Dingel (2019) assumed in the context of sorting of workers 

across the cities.53 

 

6.3. Cross-Sectional, Cross-Market Patterns 

 Figures 8a-8d illustrate the patterns of the profit, the revenue, the markup rates, and the 

pass-through rates across firms that emerge in equilibrium as more productive firms sort 

themselves into larger markets.  

The profit schedule, Π𝜓𝜓 = max
𝑗𝑗
�𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗�, shown in Figure 8a, is obtained by the 

upper envelope of 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗. It is globally continuous and strictly decreasing in 𝜓𝜓, with the 

kink at the cutoff point, 𝜓𝜓𝑗𝑗. It is continuous at each cutoff, 𝜓𝜓𝑗𝑗, because the lower markup rate in 

market-𝑗𝑗 cancels out its larger market size, keeping 𝜓𝜓𝑗𝑗-firms indiffierent btw market-𝑗𝑗 & market-

(𝑗𝑗 + 1). 

The revenue schedule, 𝑅𝑅𝜓𝜓, shown in Figure 8b, is continuously decreasing in 𝜓𝜓 within 

each market. However, it exhibits a downward jump at the cutoff 𝜓𝜓𝑗𝑗 (𝑗𝑗 = 1, 2, … , 𝐽𝐽 − 1), as 

𝑟𝑟�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗
𝑟𝑟�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1

=
𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1
=

𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �
𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �

> 1. 

This is because, if 𝜓𝜓𝑗𝑗-firms switch from market-(𝑗𝑗 + 1) to larger-but-more-competitive market-𝑗𝑗, 

they need to lower the markup rate, so that they need to earn higher revenue in market-𝑗𝑗 than in 

market-(𝑗𝑗 + 1) to keep them indiffierent between the two markets. In spite of these 

discontinuities, 𝑅𝑅𝜓𝜓, is globally strictly decreasing in 𝜓𝜓. 
 

good and the (nonhomothetic) DEA aggregator of differentiated consumer goods, and they needed to impose the 
condition on the market size distribution to ensure the uniqueness of the equilibrium.   
53Baldwin and Okubo (2006) also considered sorting of heterogeneous firms in a spatial context under the CES 
demand. The positive assortative matching in their model is due to their equilibrium selection criterion based on the 
protocol that larger firms choose in which markets to locate earlier, which they argue is plausible because larger 
firms gain more (but not proportionately) from moving to the larger markets. Some criticize this protocol as ad hoc, 
because smaller firms may move faster since they are more agile. Our analysis suggests that such a criticism is 
unwarranted because, if we consider their CES demand as a limit of the H.S.A. demand under A2, the same 
equilibrium will be selected. 
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On the other hand, the markup rate schedule, 𝜇𝜇𝜓𝜓, shown in Figure 8c, is not globally 

monotonic in 𝜓𝜓. It is continuously decreasing in 𝜓𝜓 within each market. At the cutoff 𝜓𝜓𝑗𝑗 (𝑗𝑗 =

1, 2, … , 𝐽𝐽 − 1), however, it jumps upward. This is because 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1 so that switching from 

market-𝑗𝑗 to smaller-but-less-competitive market-(𝑗𝑗 + 1) allows 𝜓𝜓𝑗𝑗-firms to increase the markup 

rates from 𝜇𝜇�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ � to 𝜇𝜇�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �. The markup rate, 𝜇𝜇𝜓𝜓, thus exhibits a sawtooth pattern.   

Likewise, the pass-through rate schedule, 𝜌𝜌𝜓𝜓, is not generally monotonic. Figure 8d 

shows the schedule under the strong A3. It is continuously increasing in 𝜓𝜓 within each market. 

At the cutoff 𝜓𝜓𝑗𝑗 (𝑗𝑗 = 1, 2, … , 𝐽𝐽 − 1), however, it jumps downward. This is because 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1 so 

that switching from market-𝑗𝑗 to smaller-but-less-competitive market-(𝑗𝑗 + 1) allows 𝜓𝜓𝑗𝑗-firms to 

reduce the pass-through rates from 𝜌𝜌�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ � to 𝜌𝜌�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �. The pass-through rate, 𝜌𝜌𝜓𝜓, thus 

exhibits a sawtooth pattern.   

 

6.4. The Composition Effect: Average Markup and Pass-Through Rates in a Multi-

Market Model 

Under A2, more productive firms have higher markup rates than less productive firms if 

they face the same level of competitive pressures. However, more productive firms sort 

themselves into large and hence more competitive markets. This generates the sawtooth pattern 

in Figure 8c. Due to this composition effect, the average markup rates in large and hence more 

competitive markets be higher. Likewise, under A2 and the strong A3, more productive firms 

have lower pass-through rates than less productive firms if they face the same level of 

competitive pressures. However, more productive firms also sort themselves into large and hence 

more competitive markets, which generates the sawtooth pattern in Figure 8d. Due to this 

composition effect, the average pass-through rates in larger and hence more competitive markets 

might be higher, as demonstrated in Proposition 11a.  Proposition 11b also demonstrates the 

possiblity that, due to an exogenous shock that causes all markets to become more competitive, 

the average markup rates to go up and the average pass-through rates to go down in all markets 

due to the shift in the composition. The proofs of these propositions are in Appendix C.6. 

Proposition 11a: Suppose A2 and 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
. There exists a sequence, 𝐿𝐿1 > 𝐿𝐿2 > ⋯ >

𝐿𝐿𝐽𝐽 > 0, such that, in equilibrium, any weighted generalized mean of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � across firms 
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operating at market-𝑗𝑗 are increasing (decreasing) in 𝑗𝑗 even though 𝑓𝑓(⋅) is increasing 

(decreasing) and hence 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � is decreasing (increasing) in 𝑗𝑗. 

Proposition 11a suggests an example with 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅

,  in which the average markup rates 

are higher under A2 (and the average pass-through rates are lower under Strong A3) in larger 

markets. 

Proposition 11b: Suppose A2 and 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
. Then, a change in 𝐹𝐹𝑒𝑒 keeps  

i) the ratios 𝑎𝑎𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄  and 𝑏𝑏𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄   

and  

ii) any weighted generalized mean of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � across firms operating at market-𝑗𝑗, for any 

weighting function 𝑤𝑤�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �,  

unchanged for all 𝑗𝑗 = 1,2, … , 𝐽𝐽. 

Proposition 11b suggests that a decline in 𝐹𝐹𝑒𝑒 under 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
 offers a knife-edge case, 

where the average markup and pass-through rates of all markets remain unchanged.  

Propositions 11a and 11b thus suggests a caution when testing A2 and A3 by comparing 

the average markup & pass-through rates across space and time. 

 

7.  Concluding Remarks 

In this paper, we apply the H.S.A. (Homotheticity with a Single Aggregator) class of 

demand systems to the Melitz (2003) model of monopolistic competition with firm 

heterogeneity. H.S.A., which contains CES and translog as special cases, is tractable due to its 

homotheticity and to its single aggregator that serves as a sufficient statistic for competitive 

pressures. It is also flexible enough to allow for the choke price, the 2nd law of demand, and what 

we call the 3rd law of demand. The single aggregator property makes it possible to prove the 

existence and uniqueness of the free-entry equilibrium and to conduct general equilibrium 

comparative static analysis, often using just simple diagrams. Furthermore, because the single 

aggregator enters all firm-specific variables proportionately with the firm-specific marginal cost, 

and hence acting as a magnifier of firm heterogeneity, we are able to characterize, by taking 

advantage of log-supermodularity, how a change in competitive pressures, whether due to a 

change in the entry cost, market size, or in the overhead cost, affects heterogeneous firms 

differently under the 2nd and the 3rd laws of demand and thereby causing reallocation across 
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firms, and hence selection of firms, and sorting of firms across different markets.  Furthermore, 

we are able to show that, due to such a composition effect, the average markup (pass-through) 

rate may move in the opposite direction of the firm-level markup (pass-through) rate. 

It is our hope that the Melitz model under H.S.A. proves to be a useful building block in 

general equilibrium models of monopolistic competition with heterogeneous firms, thereby 

opening up for the possiblity of addressing a wide range of issues, where markup rate and pass-

through rate heterogeneity would play central roles. 
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Figure 3: Cross-Sectional Implications of A2 and A3 

Figure 3a: Log-Supermodular 
Profit under A2 
 
Log-profit always downward-
sloping and strictly concave under 
A2. A lower 𝐴𝐴 causes a parallel 
leftward shift; A higher 𝐿𝐿 causes a 
parallel upward shift.  
 
[Under the weak A3, the graph of 
log-revenue has the same 
properties.]  

 

Figure 3b: A2 & A3 and Log-
Supermodular Markup Rate 
Downward-sloping under A2 and 
strict(weak)ly convex under 
strong(weak) A3. A lower 𝐴𝐴 (more 
competitive pressures) causes a 
parallel leftward shift. 
 

 

 Figure 3c: A2 & the weak A3 
and  
Log-Supermodular Employment 
Hump-shaped and strictly concave 
under A2 and the weak A3. A 
lower 𝐴𝐴 (more competitive 
pressures) causes a parallel 
leftward shift; A higher 𝐿𝐿 (larger 
market size) causes a parallel 
upward shift. 

 

Figure 3d:  
A2 and strong A3 and Pass-
Through Rate 
Under A2, ln 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) < 0; 
Under strong A3, strictly 
increasing;  
Under A2 and strong A3, globally 
strictly convex for a sufficiently 
small 𝑧𝑧: 
A lower 𝐴𝐴 (more competitive 
pressures) causes a parallel 
leftward shift. 
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 Figure 4: Comparative Statics on 𝝍𝝍𝒄𝒄 and A 
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Figure 5a: 𝐹𝐹𝑒𝑒 ↓  under A2 and the weak A3  
 
From Corollary 6a of Proposition 6, 𝐴𝐴 ↓,  𝜓𝜓𝑐𝑐 ↓ with 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  unchanged. Hence, the cutoff firms 
before the change and those after the change have the same markup rate 𝜇𝜇(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ), the same 
profit 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝐹𝐹, and the same revenue, 𝑟𝑟(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐹𝐹. 
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Figure 5b: An increase in 𝐿𝐿 under A2 and the weak A3 
From Corollary 6b of Proposition 6, 𝐴𝐴 ↓,  𝜓𝜓𝑐𝑐 ↓ with 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ↑ and 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) ↑.   Hence, 
compared to the cutoff firms before the change, the cutoff firms after the change have  
a lower markup rate, 𝜇𝜇(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) ↓, the same profit, 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝐹𝐹, and a higher revenue, 
𝑟𝑟(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐹𝐹 ↑ 
 
From Proposition 7a, the profits are up (down) for 𝜓𝜓 < (>)𝜓𝜓0.  
From Proposition 7b, the revenues are up (down) for 𝜓𝜓 < (>)𝜓𝜓1 for a sufficiently small 𝐹𝐹. 
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Figure 5c: 𝐹𝐹 ↓ under A2 and the weak A3 with ℓ′(∙) > 0  
From Corollary 6c of Proposition 6, 𝐴𝐴 ↓,  𝜓𝜓𝑐𝑐 ↓ with 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ↑ and 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) ↑.  Hence, 
compared to the cutoff firms before the change, the cutoff firms after the change have  
a lower markup rate, 𝜇𝜇(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) ↓, a lower profit, 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝐹𝐹 ↓, and a lower revenue, 
𝑟𝑟(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐹𝐹 ↓. 
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Figure 6: The Limit Case: for 𝐹𝐹 → 0 with 𝑧𝑧̅ < ∞. 
 
 
 
Figure 6a: 𝐹𝐹𝑒𝑒 𝐿𝐿⁄ ↓ for 𝐹𝐹 → 0 
with 𝑧𝑧̅ < ∞ 

 

 
Figure 6b: 𝐹𝐹𝑒𝑒 𝐿𝐿⁄ ↓ for 𝐹𝐹 → 0 
with 𝑧𝑧̅ < ∞  under A2 and the 
weak A3 
 
𝐴𝐴 ↓,𝜓𝜓𝑐𝑐 ↓  with 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝑧𝑧̅ 
unchanged. Hence, the cutoff 
firms always (i.e., both before 
and after the change) have 
𝜇𝜇(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) = 1 and 
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝑟𝑟(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 0.  
 
In the middle and bottom 
panels, Blue indicates the 
effects of 𝐹𝐹𝑒𝑒 𝐿𝐿⁄ ↓  due to 𝐹𝐹𝑒𝑒 ↓  
and Purple indicates the 
effects of  𝐹𝐹𝑒𝑒 𝐿𝐿⁄ ↓  due to 𝐿𝐿 ↑ 
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Figure 8: Profit, Revenue, Markup, and Pass-through Schedules across Firms and Markets  
 
 
 
 
Figure 8a: 
Profits: Under A2 
 

 

 
 
 
Figure 8b:  
Revenues under A2 
 

 

 
Figure 8c: 
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A2 
 

 

 
Figure 8d: 
Pass-through rates 
under A2 and the 
strong A3 
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Appendix A: Firm type distributions and their elasticities 
 
Let the distribution of the marginal cost, 𝜓𝜓, be given by its cdf, 𝐺𝐺(𝜓𝜓), with the support, �𝜓𝜓,𝜓𝜓� ⊆

(0,∞), and hence that of productivity, 𝜑𝜑 = 1 𝜓𝜓⁄ , be given by its cdf, 𝐹𝐹(𝜑𝜑) = 1 − 𝐺𝐺(1 𝜑𝜑⁄ ),  with 

the support, �𝜑𝜑,𝜑𝜑� = �1 𝜓𝜓⁄ , 1 𝜓𝜓� � ⊆ (0,∞). We assume that these cdfs are thrice continuously 

differentiable, 𝐶𝐶3, and hence that their pdfs satisfy, 𝐺𝐺′(𝜓𝜓) = 𝑔𝑔(𝜓𝜓) > 0 on �𝜓𝜓,𝜓𝜓� and 𝐹𝐹′(𝜑𝜑) =

 𝑓𝑓(𝜑𝜑) > 0 on �𝜑𝜑,𝜑𝜑� and are twice continuously differentiable, 𝐶𝐶2, so that ℰ𝐺𝐺(𝜓𝜓) ≡

𝜓𝜓𝜓𝜓(𝜓𝜓) 𝐺𝐺(𝜓𝜓)⁄ ∈ 𝐶𝐶2,  ℰ𝑔𝑔(𝜓𝜓) ≡ 𝜓𝜓𝑔𝑔′(𝜓𝜓) 𝑔𝑔(𝜓𝜓)⁄ ∈ 𝐶𝐶1 and ℰ𝐹𝐹(𝜑𝜑) ≡ 𝜑𝜑𝜑𝜑(𝜑𝜑) 𝐹𝐹(𝜑𝜑)⁄ ∈ 𝐶𝐶2,  ℰ𝑓𝑓(𝜑𝜑) ≡

𝜑𝜑𝑓𝑓′(𝜑𝜑) 𝑓𝑓(𝜑𝜑)⁄ ∈ 𝐶𝐶1  It is straightforward to show that: 

 

𝜑𝜑𝜑𝜑(𝜑𝜑) = 𝜓𝜓𝜓𝜓(𝜓𝜓); 

 

ℰ𝑓𝑓(𝜑𝜑) + ℰ𝑔𝑔(𝜓𝜓) = −2; 

and  

𝜑𝜑ℰ𝑓𝑓′(𝜑𝜑) = 𝜓𝜓ℰ𝑔𝑔′ (𝜓𝜓). 

We also assume that the mean productivity is finite: 

� 𝜑𝜑𝜑𝜑(𝜑𝜑)𝑑𝑑𝑑𝑑
𝜑𝜑

𝜑𝜑
= � 𝜓𝜓−1𝑔𝑔(𝜓𝜓)𝑑𝑑𝑑𝑑

𝜓𝜓

𝜓𝜓
< ∞. 

This is guaranteed if 𝜓𝜓 > 0 ⇔ 𝜑𝜑 < ∞.  If 𝜓𝜓 = 0 ⇔ 𝜑𝜑 = ∞, a sufficient condition for the finite 

mean productivity is given by: 

− lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) = lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) + 2 < 0. 
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To see this, note that lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) + 2 < 0 ⟺ lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) + 1 < −1 implies that 𝜑𝜑𝜑𝜑(𝜑𝜑) 

decreases faster than 1 𝜑𝜑⁄  as 𝜑𝜑 → ∞, ∫ 𝜑𝜑𝜑𝜑(𝜑𝜑)𝑑𝑑𝑑𝑑∞
𝜑𝜑 < ∞.54 

Lemma 1:  

ℰ𝑔𝑔′ (𝜓𝜓) < 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹  ℰ𝐺𝐺′ (𝜓𝜓) < 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓�. 

Furthermore, if 𝜓𝜓 = 0 and lim
𝜓𝜓→ 0

𝜓𝜓𝜓𝜓(𝜓𝜓) = 0, 

ℰ𝑔𝑔′ (𝜓𝜓) ≥ 0,∀𝜓𝜓 ∈ �0,𝜓𝜓� ⟹  ℰ𝐺𝐺′ (𝜓𝜓) ≥ 0,∀𝜓𝜓 ∈ �0,𝜓𝜓�. 

Proof:55   ℰ𝑔𝑔′ (𝜓𝜓) ⋛ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� implies 

�ℰ𝑔𝑔(𝜓𝜓) + 1�𝐺𝐺(𝜓𝜓) = �ℰ𝑔𝑔(𝜓𝜓) + 1�� 𝑔𝑔(𝜉𝜉)𝑑𝑑𝑑𝑑
𝜓𝜓

 𝜓𝜓
⋛ � �ℰ𝑔𝑔(𝜉𝜉) + 1�𝑔𝑔(𝜉𝜉)𝑑𝑑𝑑𝑑

𝜓𝜓

 𝜓𝜓

= � [𝜉𝜉𝑔𝑔′(𝜉𝜉) + 𝑔𝑔(𝜉𝜉)]𝑑𝑑𝑑𝑑
𝜓𝜓

 𝜓𝜓
= � 𝑑𝑑[𝜉𝜉𝜉𝜉(𝜉𝜉)]

𝜓𝜓

 𝜓𝜓
= 𝜓𝜓𝜓𝜓(𝜓𝜓) − lim

𝜓𝜓→ 𝜓𝜓
𝜓𝜓𝜓𝜓(𝜓𝜓), 

which in turn implies 

ℰ𝐺𝐺′ (𝜓𝜓) =
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜓𝜓𝜓𝜓(𝜓𝜓)
𝐺𝐺(𝜓𝜓) � =

[𝜓𝜓𝑔𝑔′(𝜓𝜓) + 𝑔𝑔(𝜓𝜓)]𝐺𝐺(𝜓𝜓) − 𝜓𝜓[𝑔𝑔(𝜓𝜓)]2

[𝐺𝐺(𝜓𝜓)]2

=
𝑔𝑔(𝜓𝜓)

[𝐺𝐺(𝜓𝜓)]2 ��ℰ𝑔𝑔
(𝜓𝜓) + 1�𝐺𝐺(𝜓𝜓) −  𝜓𝜓𝜓𝜓(𝜓𝜓)� ⋛ −

𝑔𝑔(𝜓𝜓)
[𝐺𝐺(𝜓𝜓)]2 � lim

𝜓𝜓→ 𝜓𝜓
𝜓𝜓𝜓𝜓(𝜓𝜓)�. 

Hence, the first part always holds, while the second part holds because lim
𝜓𝜓→0

𝜓𝜓𝜓𝜓(𝜓𝜓) = 0.    

This completes the proof. ∎ 

 
54Equivalently, − lim

𝜓𝜓→0
ℰ𝑔𝑔(𝜓𝜓) < 0 ⟺ lim

𝜓𝜓→0
ℰ𝑔𝑔(𝜓𝜓) − 1 > −1, implies that 𝜓𝜓−1𝑔𝑔(𝜓𝜓) increases slower than 𝜓𝜓−1 as 𝜓𝜓 ↘

0, hence ∫ 𝜓𝜓−1𝑔𝑔(𝜓𝜓)𝑑𝑑𝑑𝑑𝜓𝜓
0 < ∞.  Even though this condition for the finite mean productivity is sufficient but not 

necessary, it is close to being necessary in the sense that the mean productivity is infinite if − lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) =

lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) + 2 > 0. The case of − lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) = lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) + 2 = 0 would require case-by-case scrutiny.  
55 For the second part of Lemma 1, we consider only the case of 𝜓𝜓 = 0, since 𝜓𝜓 > 0 and lim

𝜓𝜓→ 𝜓𝜓 
𝜓𝜓𝜓𝜓(𝜓𝜓) = 0 would 

imply lim
𝜓𝜓→ 𝜓𝜓 

𝑔𝑔(𝜓𝜓) = 0, so that lim
𝜓𝜓→ 𝜓𝜓

ℰ𝑔𝑔(𝜓𝜓) = ∞, hence ℰ𝑔𝑔′ (𝜓𝜓) < 0 for 𝜓𝜓 close to 𝜓𝜓 > 0.  Thus, it would be 

impossible to satisfy ℰ𝑔𝑔′ (𝜓𝜓) ≥ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓�. It is also worth noting that the second part would fail if 𝜓𝜓 > 0 and 
lim
𝜓𝜓→ 𝜓𝜓 

𝜓𝜓𝜓𝜓(𝜓𝜓) > 0. [An example is a truncated power, for which ℰ𝑔𝑔′ (⋅) = 0 but ℰ𝐺𝐺′ (⋅) ≠ 0. ] Lemma 1 can also be 

obtained as a corollary of Theorem 1 and Theorem 2 of Bagnoli and Bergstrom (2005) by noting that  ℰ𝐺𝐺′ (⋅) <
(>)0 if and only if the cdf of 𝜃𝜃 ≡ ln𝜓𝜓, 𝐺𝐺�𝑒𝑒𝜃𝜃�, is log-concave (log-convex) and that ℰ𝑔𝑔′ (⋅) < (>)0 if and only if the 
density of 𝜃𝜃, 𝑒𝑒𝜃𝜃𝑔𝑔�𝑒𝑒𝜃𝜃�, is log-concave (log-convex). 
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The following lemma states how a change in 𝜓𝜓𝑐𝑐 shifts the distribution of 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ , the 

marginal cost relative to the cutoff marginal cost, 𝜓𝜓𝑐𝑐, among surviving firms. It shows that, if 

ℰ𝑔𝑔(⋅) is increasing (decreasing), an increase in 𝜓𝜓𝑐𝑐 causes a shift to the right (left) in the sense of 

the monotone likelihood ratio ordering; and that, if ℰ𝐺𝐺(⋅) is increasing (decreasing), an increase 

in 𝜓𝜓𝑐𝑐 causes a shift to the right (left) in the sense of the first-order stochastic dominance.  

Lemma 2: Define 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ ∈ �𝜉𝜉, 1�, where 𝜉𝜉 ≡  𝜓𝜓 𝜓𝜓𝑐𝑐⁄ .  Consider a cdf, 

𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) ≡
𝐺𝐺(𝜓𝜓𝑐𝑐𝜉𝜉)
𝐺𝐺(𝜓𝜓𝑐𝑐) , 

and its density function, 

𝑔𝑔�(𝜉𝜉;𝜓𝜓𝑐𝑐) ≡
𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)

𝑑𝑑𝑑𝑑
 =

𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐𝜉𝜉)
𝐺𝐺(𝜓𝜓𝑐𝑐) , 

whose support is �𝜉𝜉, 1� with 𝐺𝐺� �𝜉𝜉;𝜓𝜓𝑐𝑐� = 0 and 𝐺𝐺�(1;𝜓𝜓𝑐𝑐) = 1. Then, 

ℰ𝑔𝑔′ (𝜉𝜉) ⋛ 0 ,∀𝜉𝜉 ∈ �𝜉𝜉, 1� ⟹
𝜕𝜕2 ln𝑔𝑔�(𝜉𝜉;𝜓𝜓𝑐𝑐)

𝜕𝜕𝜉𝜉𝜉𝜉𝜓𝜓𝑐𝑐
⋛ 0,∀𝜉𝜉 ∈ (𝜉𝜉, 1) 

and 

ℰ𝐺𝐺′ (𝜉𝜉) ⋛ 0 ,∀𝜉𝜉 ∈ �𝜉𝜉, 1� ⟹
𝜕𝜕𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

⋚ 0,∀𝜉𝜉 ∈ �𝜉𝜉, 1�. 

Proof:  The first statement follows from  

𝜕𝜕2 ln𝑔𝑔�(𝜉𝜉;𝜓𝜓𝑐𝑐)
𝜕𝜕𝜉𝜉𝜉𝜉𝜓𝜓𝑐𝑐

=
𝜕𝜕2 ln𝑔𝑔(𝜓𝜓𝑐𝑐𝜉𝜉)

𝜕𝜕𝜉𝜉𝜉𝜉𝜓𝜓𝑐𝑐
= ℰ𝑔𝑔′ (𝜓𝜓𝑐𝑐𝜉𝜉) ⋛ 0, ∀𝜉𝜉 ∈ �𝜉𝜉, 1�. 

The second statement follows from    

 
𝜕𝜕 ln𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)
𝜕𝜕 ln𝜓𝜓𝑐𝑐

=  
𝜕𝜕 ln[𝐺𝐺(𝜓𝜓𝑐𝑐𝜉𝜉) 𝐺𝐺(𝜓𝜓𝑐𝑐)⁄ ]

𝜕𝜕 ln𝜓𝜓𝑐𝑐
= ℰ𝐺𝐺(𝜓𝜓𝑐𝑐𝜉𝜉) − ℰ𝐺𝐺(𝜓𝜓𝑐𝑐) ⋚ 0,∀𝜉𝜉 ∈ (𝜉𝜉, 1),  

if ℰ𝐺𝐺′ (𝜉𝜉) ⋛ 0.   This completes the proof. ∎ 

 

The signs of ℰ𝑔𝑔′ (⋅) and of ℰ𝐺𝐺′ (⋅) play critical roles for some of the comparative statics results. 

Thus, we now list some parametric families of distributions (widely used in the literature), for 

which the sign of ℰ𝑔𝑔′ (⋅) never changes over the support, which also means, from Lemma 1, that 

the sign of ℰ𝐺𝐺′ (⋅) never changes over the support, either.  
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Example 1: Pareto (or power) distribution. The cdfs are given by 

𝐹𝐹(𝜑𝜑) = 1 − �𝜑𝜑 𝜑𝜑⁄ �
−𝜅𝜅

⟺ 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅

;  

for 𝜑𝜑 > 𝜑𝜑 > 0 ⟺  0 < 𝜓𝜓 < 𝜓𝜓 < ∞.  The pdfs satisfy: 

𝜑𝜑𝜑𝜑(𝜑𝜑) = 𝜅𝜅 �𝜑𝜑 𝜑𝜑⁄ �
−𝜅𝜅

= 𝜅𝜅�𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅

= 𝜓𝜓𝜓𝜓(𝜓𝜓)    

Hence, ℰ𝑓𝑓(𝜑𝜑) = − 𝜅𝜅 − 1  and ℰ𝑔𝑔(𝜓𝜓) =  𝜅𝜅 − 1,  so that ℰ𝑓𝑓′(𝜑𝜑) = ℰ𝑔𝑔′ (𝜓𝜓) = 0. The condition for 

the finite mean productivity is given by 𝜅𝜅 > 1. 

 

Example 2: Generalized Pareto (Power) distribution. The generalized Pareto (Power) family 

nests Pareto (Power) as a special case and allows all the three possibilities for 𝑠𝑠𝑠𝑠𝑠𝑠�ℰ𝑓𝑓′(⋅)� =

𝑠𝑠𝑠𝑠𝑠𝑠�ℰ𝑔𝑔′ (⋅)� to depend on the parameter values. The cdfs are given by 

𝐹𝐹(𝜑𝜑) = 1 − �1 +
𝜑𝜑 − 𝜑𝜑
𝜆𝜆

�
−𝜅𝜅

, 𝜑𝜑 > 𝜑𝜑 > 0, 𝜆𝜆 > 0. 

𝐺𝐺(𝜓𝜓) = �1 +
1 𝜓𝜓⁄ − 1 𝜓𝜓⁄

𝜆𝜆
�
−𝜅𝜅

, 0 < 𝜓𝜓 < 𝜓𝜓 < ∞, 𝜆𝜆 > 0. 

Hence, the pdfs satisfy: 

𝜑𝜑𝜑𝜑(𝜑𝜑) =
𝜑𝜑𝜑𝜑
𝜆𝜆
�1 +

𝜑𝜑 − 𝜑𝜑
𝜆𝜆

�
−𝜅𝜅−1

=
𝜅𝜅
𝜓𝜓𝜓𝜓

�1 +
1 𝜓𝜓⁄ − 1 𝜓𝜓⁄

𝜆𝜆
�
−𝜅𝜅−1

= 𝜓𝜓𝜓𝜓(𝜓𝜓) 

from which 

ℰ𝑓𝑓(𝜑𝜑) = −(1 + 𝜅𝜅)�
𝜑𝜑

𝜆𝜆 − 𝜑𝜑 + 𝜑𝜑
� = −(1 + 𝜅𝜅)�

1 𝜓𝜓⁄
𝜆𝜆 − 1 𝜓𝜓⁄ + 1 𝜓𝜓⁄

� = −ℰ𝑔𝑔(𝜓𝜓) − 2. 

Clearly, the standard Pareto (Power) distribution is a special case with 𝜆𝜆 = 𝜑𝜑 = 1 𝜓𝜓⁄ . More 

generally, one can readily verify that: 

𝜓𝜓ℰ𝑔𝑔′ (𝜓𝜓) = 𝜑𝜑ℰ𝑓𝑓′(𝜑𝜑) = −(1 + 𝜅𝜅)
𝜑𝜑 �𝜆𝜆 − 𝜑𝜑�

�𝜆𝜆 − 𝜑𝜑 + 𝜑𝜑�
2 ⋛ 0  ⟺   𝜆𝜆 ⋚ 𝜑𝜑 = 1 𝜓𝜓⁄ . 

 

Example 3: Lognormal distribution. Since ln𝜑𝜑 = − ln𝜓𝜓, productivity is distributed 

lognormally if and only if the marginal cost is distributed lognormally. In this case, the support is 

(0,∞). For all 𝜑𝜑 > 0 and for all 𝜓𝜓 > 0, the pdfs can be represented by 
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𝑓𝑓(𝜑𝜑) =
1

𝜑𝜑𝜎𝜎�√2𝜋𝜋
exp �−

(log𝜑𝜑 − 𝜇𝜇)2

2𝜎𝜎�2
�, 

𝑔𝑔(𝜓𝜓) =
1

𝜓𝜓𝜎𝜎�√2𝜋𝜋
exp �−

(log𝜓𝜓 + 𝜇𝜇)2

2𝜎𝜎�2
�, 

where 𝜇𝜇 ∈ ℝ and 𝜎𝜎� > 0. The mean productivity is: 

� 𝜑𝜑𝜑𝜑(𝜑𝜑)𝑑𝑑𝑑𝑑
∞

0
= � 𝜓𝜓−1𝑔𝑔(𝜓𝜓)𝑑𝑑𝑑𝑑

∞

0
= exp �𝜇𝜇 +

𝜎𝜎�2

2
� < ∞. 

The elasticities of the pdfs are strictly decreasing, because 

ℰ𝑓𝑓(𝜑𝜑) =
𝜇𝜇 − log𝜑𝜑

𝜎𝜎�2
− 1 =

𝜇𝜇 + log𝜓𝜓
𝜎𝜎�2

− 1 = −ℰ𝑔𝑔(𝜓𝜓) − 2 

⟹𝜑𝜑ℰ𝑓𝑓′(𝜑𝜑) = 𝜓𝜓ℰ𝑔𝑔′ (𝜓𝜓) = −
1
𝜎𝜎�2

< 0. 

Hence, from Lemma 1, the elasticities of the cdfs are also strictly decreasing. 

Example 4: Fréchet and Weibull distributions. The parametric families of Fréchet and 

Weibull distributions both belong to the class of extreme-value distributions.56 When the 

distribution of 𝜑𝜑 is Fréchet (respectively, Weibull) if and only if that of 𝜓𝜓 = 1 𝜑𝜑⁄  is Weibull 

(respectively, Fréchet). Therefore, we consider the case of 𝜑𝜑 being Fréchet and omit the case of 

𝜑𝜑 being Weibull. 

For all 𝜑𝜑 > 0 and for all 𝜓𝜓 > 0, the cdf of the Fréchet productivity distribution 𝐹𝐹 and the 

corresponding Weibull cost distribution 𝐺𝐺 are given, respectively, by 

𝐹𝐹(𝜑𝜑) = exp{−𝜑𝜑−𝛼𝛼} , 𝐺𝐺(𝜓𝜓) = 1 − exp{−𝜓𝜓𝛼𝛼}, 

where 𝛼𝛼 > 0. The pdfs are given by 

𝑓𝑓(𝜑𝜑) = 𝛼𝛼𝜑𝜑−(1+𝛼𝛼) exp{−𝜑𝜑−𝛼𝛼} , 𝑔𝑔(𝜓𝜓) = 𝛼𝛼𝜓𝜓𝛼𝛼−1 exp{−𝜓𝜓𝛼𝛼}. 

Hence, 

ℰ𝑓𝑓(𝜑𝜑) = −(1 + 𝛼𝛼) + 𝛼𝛼𝜑𝜑−𝛼𝛼,   ℰ𝑔𝑔(𝜓𝜓) = 𝛼𝛼 − 1 − 𝛼𝛼𝜓𝜓𝛼𝛼 

⟹ 𝜑𝜑ℰ𝑓𝑓′(𝜑𝜑) = −𝛼𝛼2𝜑𝜑−𝛼𝛼 = −𝛼𝛼2𝜓𝜓𝛼𝛼 = 𝜓𝜓ℰ𝑔𝑔′ (𝜓𝜓) < 0, 

so that the elasticities of the pdfs are strictly decreasing, and so are the elasticities of the cdfs 

from Lemma 1.  The mean productivity is finite if and only if 

 
56 The third parametric family belonging to the class of extreme-value distributions is the Gumbel distribution. 
However, without any modification (e.g., truncation), it is not a legitimate distribution for 𝜑𝜑 or 𝜓𝜓 since its support 
includes negative real numbers. 
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− lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) = lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) + 2 = 𝛼𝛼 − 1 < 0 ⟺ 𝛼𝛼 > 1. 

and given by: 

� 𝜑𝜑𝜑𝜑(𝜑𝜑)𝑑𝑑𝑑𝑑
∞

0
= � 𝜓𝜓−1𝑔𝑔(𝜓𝜓)𝑑𝑑𝑑𝑑

∞

0
= Γ �1 −

1
𝛼𝛼
� < ∞, 

where Γ(𝑥𝑥) is the Gamma function. 

Γ(𝑥𝑥) ≡ � 𝑦𝑦𝑥𝑥−1 exp{−𝑦𝑦}𝑑𝑑𝑑𝑑
∞

0
. 

 

Appendix B: A Sufficient Condition under which the equilibrium is well-defined. 

For the equilibrium discussed in the main text to be well-defined, the integrals in the free 

entry condition and the adding-up constraint must be both well-defined. Since 

𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� =

 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) < 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
�, 

it suffices to show that    

� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
< ∞. 

First, we introduce the following lemma. 

Lemma 3: 𝐼𝐼𝐼𝐼 ζ(0) < ∞, lim
𝑧𝑧→0

𝑧𝑧𝜁𝜁′(𝑧𝑧)
ζ(𝑧𝑧) = lim

𝑧𝑧→0
ℰ𝜁𝜁(𝑧𝑧) = 0. 

Proof:  This follows from 1 < ζ(𝑧𝑧) = ζ(0) exp �∫ 𝜉𝜉ζ′(𝜉𝜉)
ζ(𝜉𝜉)

𝑑𝑑𝑑𝑑
𝜉𝜉

𝑧𝑧
0 � = ζ(0) exp �∫ ℰ𝜁𝜁(𝜉𝜉) 𝑑𝑑𝑑𝑑

𝜉𝜉
𝑧𝑧
0 � < ∞. ∎ 

Lemma 4. The above integral is finite and hence well-defined, either if 𝜓𝜓 > 0 ⇔ 𝜑𝜑 < ∞ or 

1 ≤ lim
𝑧𝑧→0

 𝜁𝜁(𝑧𝑧) < 2 + lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) = − lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) < ∞, 

for 𝜓𝜓 = 0 ⇔ 𝜑𝜑 = ∞. 

Proof.  Clearly, the integral is well-defined if 𝜓𝜓 > 0. Now suppose 𝜓𝜓 = 0, and 1 ≤ lim
𝑧𝑧→0

 𝜁𝜁(𝑧𝑧) ≡

𝜁𝜁(0) < 2 + lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) < ∞.  First, 1 ≤ 𝜁𝜁(0) < ∞ implies lim
𝑧𝑧→0

ℰ𝜁𝜁(𝑧𝑧) = 0 from Lemma 3. 

Second, because 
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𝜕𝜕 ln �𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑔𝑔(𝜓𝜓)�
𝜕𝜕 ln𝜓𝜓

= ℰ𝑔𝑔(𝜓𝜓) +
𝜕𝜕 ln �𝜋𝜋 �𝜓𝜓𝐴𝐴��
𝜕𝜕 ln𝜓𝜓

+
𝜕𝜕 ln �𝜎𝜎 �𝜓𝜓𝐴𝐴��
𝜕𝜕 ln𝜓𝜓

= ℰ𝑔𝑔(𝜓𝜓) −
�𝜎𝜎 �𝜓𝜓𝐴𝐴� − 1�

2

𝜎𝜎 �𝜓𝜓𝐴𝐴� − 1 + ℰ𝜁𝜁 �𝑍𝑍 �
𝜓𝜓
𝐴𝐴��

, 

lim
𝜓𝜓→0

𝜕𝜕 ln �𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑔𝑔(𝜓𝜓)�
𝜕𝜕 ln𝜓𝜓

= lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) − 𝜁𝜁(0) + 1 > −1, 

where use has been made of lim
𝑧𝑧→0

ℰ𝜁𝜁(𝑧𝑧) = 0 and 𝜁𝜁(0) < 2 + lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓).   This inequality means 

that, for every finite 𝜓𝜓𝑐𝑐 > 0, there exist Λ(𝜓𝜓𝑐𝑐) > 0  and 𝛿𝛿 > 0 such that, 

� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑔𝑔(𝜓𝜓)𝑑𝑑𝑑𝑑

𝜓𝜓𝑐𝑐

0
< � Λ(𝜓𝜓𝑐𝑐)𝜓𝜓𝛿𝛿−1𝑑𝑑𝑑𝑑

𝜓𝜓𝑐𝑐

0
= Λ(𝜓𝜓𝑐𝑐)

𝜓𝜓𝑐𝑐𝛿𝛿

𝛿𝛿
< ∞. 

This completes the proof. ∎ 

It should be noted that the finite mean productivity is neither sufficient nor necessary for 

the existence of equilibrium. The equilibrium exists even when the mean productivity is infinite, 

if  

1 ≤ lim
𝑧𝑧→0

 𝜁𝜁(𝑧𝑧) < 2 + lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) = − lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) < 2, 

while the equilibrium fails to exist even when the mean productivity is finite if 

lim
𝑧𝑧→0

 𝜁𝜁(𝑧𝑧) > 2 + lim
𝜓𝜓→0

ℰ𝑔𝑔(𝜓𝜓) = − lim
𝜑𝜑→∞

ℰ𝑓𝑓(𝜑𝜑) > 2. 

For example, 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 > 1 under CES, and ℰ𝑔𝑔(𝜓𝜓) = 𝜅𝜅 − 1 under a Power (Pareto), so that the 

equilibrium exists if 1 < 𝜎𝜎 < 𝜅𝜅 + 1, and the mean productivity is finite if 𝜅𝜅 > 1. Hence, the 

equilibrium exists even when the mean productivity is infinite, if 1 < 𝜎𝜎 < 𝜅𝜅 + 1 < 2, while the 

equilibrium fails to exist even when the mean productivity is finite, if 𝜎𝜎 > 𝜅𝜅 + 1 > 2. 

Appendix C: Technical Proofs 

C.1.  Proof of Lemma 6 

Lemma 6: Under A2 and the weak A3, lim
𝜓𝜓 𝐴𝐴⁄ →0

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) < 1 < lim
𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ). 

Proof:  The proof proceeds in two steps. 
Step 1:  A2 and the weak A3 jointly imply 

lim
𝜓𝜓 𝐴𝐴⁄ →0

𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� < 1 ⟺ lim

𝑧𝑧→0

𝑧𝑧𝜁𝜁′(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄
𝜁𝜁(𝑧𝑧) − 1

> 0. 
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From Lemma 3, the numerator goes to zero, hence, lim
𝑧𝑧→0

ζ(𝑧𝑧) = lim
𝜓𝜓 𝐴𝐴⁄ →0

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) = 1, which 

proves lim
𝜓𝜓 𝐴𝐴⁄ →0

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) < 1. 

Step 2:  For 𝑧𝑧 < ∞,   

lim
𝑧𝑧→𝑧𝑧

ζ(𝑧𝑧) = lim
𝜓𝜓 𝐴𝐴⁄ →𝑧𝑧

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) = ∞⟹ lim
𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) = ∞. 

For 𝑧𝑧 = ∞,  if lim
𝜓𝜓 𝐴𝐴⁄ →∞

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) = 1,  

lim
𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) = lim
𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) > 1. 

On the other hand, if lim
𝜓𝜓 𝐴𝐴⁄ →∞

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) < 1 ⟺ lim
𝑧𝑧→∞

𝑧𝑧𝜁𝜁′(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄
𝜁𝜁(𝑧𝑧)−1

> 0 ⟺ lim
𝑧𝑧→∞

𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) > 0,  

lim
𝜓𝜓 𝐴𝐴⁄ →∞

𝜎𝜎 �
𝜓𝜓
𝐴𝐴
� = lim

𝑧𝑧→∞
ζ(𝑧𝑧) = ζ(𝑧𝑧′) exp ��

𝜉𝜉ζ′(𝜉𝜉)
ζ(𝜉𝜉)

𝑑𝑑𝑑𝑑
𝜉𝜉

∞

𝑧𝑧′
� = ∞⟹ lim

𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧
𝜌𝜌 �
𝜓𝜓
𝐴𝐴
�𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� = ∞. 

Thus, in all of these cases,  
lim

𝜓𝜓 𝐴𝐴⁄ →𝑧̅𝑧
𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) > 1. 

 This completes the proof. ∎ 

 

C.2. Proof of Proposition 5 

To prove Proposition 5, we first need the following two lemmas.  For this purpose, let us denote 
𝜃𝜃(𝑧𝑧) ≡ ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) so that 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) = ℰ𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) = 1 �1 + 𝜃𝜃�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )��⁄ . 

Lemma 7: 

ℰ𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� = 𝜖𝜖 �𝑍𝑍 �

𝜓𝜓
𝐴𝐴
�� ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜖𝜖(𝑧𝑧) ≡ −

𝑧𝑧𝜃𝜃′(𝑧𝑧)
[1 + 𝜃𝜃(𝑧𝑧)]2. 

Proof: Straightforward from the definition. 

Lemma 8: For 0 ≤ 𝜌𝜌(0) < ∞, lim
z→0

𝜖𝜖(𝑧𝑧) = 0. 

Proof:  From 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) = 1
1+𝜃𝜃�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�

, 

𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� − 𝜌𝜌 �

𝜓𝜓0
𝐴𝐴
� =

1
1 + 𝜃𝜃�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�

−
1

1 + 𝜃𝜃�𝑍𝑍(𝜓𝜓0 𝐴𝐴⁄ )�
= �

𝑑𝑑
𝑑𝑑𝑑𝑑

�
1

1 + 𝜃𝜃(𝜉𝜉)� 𝑑𝑑𝑑𝑑
𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )

𝑍𝑍(𝜓𝜓0 𝐴𝐴⁄ )

= � �−
𝜃𝜃′(𝜉𝜉)

[1 + 𝜃𝜃(𝜉𝜉)]2� 𝑑𝑑𝑑𝑑
𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )

𝑍𝑍(𝜓𝜓0 𝐴𝐴⁄ )
≡ �

𝜖𝜖(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )

𝑍𝑍(𝜓𝜓0 𝐴𝐴⁄ )
, 

for any 𝜓𝜓0 > 0.  From 0 ≤ 𝜌𝜌(0) < ∞, the RHS remains bounded as 𝑧𝑧0 = 𝑍𝑍(𝜓𝜓0 𝐴𝐴⁄ ) → 0. Hence, 
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�
𝜖𝜖(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧𝑧

0
< ∞, 

which implies lim
z→0

𝜖𝜖(𝑧𝑧) = 0.  

Proposition 5: Suppose that A2 and the strong A3 hold, so that 0 < 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) < 1 and 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is 

strictly increasing.  Then, 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is strictly log-submodular for all 𝜓𝜓 𝐴𝐴⁄ < 𝑧𝑧 with a sufficiently 

small 𝑧𝑧. 

Proof: Under A2, 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) < 1 for all 𝜓𝜓 𝐴𝐴⁄ < 𝑧𝑧, hence the condition for Lemma 8 holds and 

lim
z→0

𝜖𝜖(𝑧𝑧) = 0. Under the strong A3, 𝜖𝜖(𝑧𝑧) ≡ −𝑧𝑧𝜃𝜃′(𝑧𝑧) [1 + 𝜃𝜃(𝑧𝑧)]2⁄ > 0 for all 𝑧𝑧 > 0. Thus, 

𝜖𝜖(⋅) > 0 is increasing for a sufficiently small 𝑧𝑧 > 0.  Hence, from Lemma 7, ℰ𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is strictly 

increasing in 𝜓𝜓 𝐴𝐴⁄  for 𝜓𝜓 𝐴𝐴⁄ < 𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) < 𝑧𝑧, with a sufficiently small 𝑧𝑧.  Hence, from Lemma 5, 

𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is strictly log-submodular for any 𝜓𝜓 𝐴𝐴⁄ < 𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) < 𝑧𝑧. 

 

C.3. Proof of Proposition 7a and 7b 

Proposition 7a (Market Size Effect on Profit, 𝚷𝚷𝝍𝝍 ≡ 𝝅𝝅(𝝍𝝍 𝑨𝑨⁄ )𝑳𝑳): Under A2, there exists a 

unique 𝜓𝜓0 ∈ (𝜓𝜓,𝜓𝜓𝑐𝑐) such that 𝜎𝜎 �𝜓𝜓0
𝐴𝐴
� = 𝔼𝔼𝜋𝜋(𝜎𝜎) with 

𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

> 0 ⟺ 𝜎𝜎�
𝜓𝜓
𝐴𝐴
� < 𝔼𝔼𝜋𝜋(𝜎𝜎) for 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓0�, 

and 
𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

< 0 ⟺ 𝜎𝜎�
𝜓𝜓
𝐴𝐴
� > 𝔼𝔼𝜋𝜋(𝜎𝜎) for 𝜓𝜓 ∈ (𝜓𝜓0,𝜓𝜓𝑐𝑐). 

Proof: 

From Proposition 6,  𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐿𝐿

= 1
1−𝔼𝔼𝜋𝜋(𝜎𝜎).  Hence, using ℰ𝜋𝜋 �

𝜓𝜓
𝐴𝐴
� = 1 − 𝜎𝜎 �𝜓𝜓

𝐴𝐴
�,   

𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

= 1 +
𝜕𝜕 ln𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )

𝜕𝜕 ln𝐴𝐴
𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln 𝐿𝐿

= 1 − ℰ𝜋𝜋 �
𝜓𝜓
𝐴𝐴
�
𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln 𝐿𝐿

=
𝔼𝔼𝜋𝜋(𝜎𝜎) − 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )

𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
. 

Thus, 
𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

⋛ 0 ⟺ 𝜎𝜎�
𝜓𝜓
𝐴𝐴
� ⋚ 𝔼𝔼𝜋𝜋(𝜎𝜎). 

Since 𝔼𝔼𝜋𝜋(𝜎𝜎) is the (profit-weighted) average of 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) over �𝜓𝜓,𝜓𝜓𝑐𝑐� and 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) is strictly 

increasing under A2, there exists a unique 𝜓𝜓0 ∈ (𝜓𝜓,𝜓𝜓𝑐𝑐) such that 𝜎𝜎(𝜓𝜓0 𝐴𝐴⁄ ) = 𝔼𝔼𝜋𝜋(𝜎𝜎), and 
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𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) < 𝔼𝔼𝜋𝜋(𝜎𝜎) for 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓0� and 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) > 𝔼𝔼𝜋𝜋(𝜎𝜎) for 𝜓𝜓 ∈ (𝜓𝜓0,𝜓𝜓𝑐𝑐).  This completes the 

proof. ∎ 

Proposition 7b (Market Size Effect on Revenue, 𝑹𝑹𝝍𝝍 ≡ 𝒓𝒓(𝝍𝝍 𝑨𝑨⁄ )𝑳𝑳): Under A2 and the weak 

A3, there exists 𝜓𝜓1 > 𝜓𝜓0, such that 
𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

> 0 for 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓1�. 

Furthermore, 𝜓𝜓1 ∈ (𝜓𝜓0,𝜓𝜓𝑐𝑐) and  
𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

<  0 for 𝜓𝜓 ∈ (𝜓𝜓1,𝜓𝜓𝑐𝑐), 

for a sufficiently small 𝐹𝐹. 57 

Proof: 

From Proposition 6,  𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐿𝐿

= 1
1−𝔼𝔼𝜋𝜋(𝜎𝜎).  Hence, using ℰ𝑟𝑟 �

𝜓𝜓
𝐴𝐴
� = 𝜌𝜌 �𝜓𝜓

𝐴𝐴
� �1 − 𝜎𝜎 �𝜓𝜓

𝐴𝐴
��,  

𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

= 1 +
𝜕𝜕 ln 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )

𝜕𝜕 ln𝐴𝐴
𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐿𝐿

= 1 − ℰ𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�
𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐿𝐿

= 1 − 𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� �
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

�. 

Thus, 
𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln𝐿𝐿

⋛ 0 ⟺ 𝜌𝜌�
𝜓𝜓
𝐴𝐴
� ⋚

𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1

.  

Since 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) is strictly increasing under A2 and 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is non-decreasing under the weak A3, the 

above inequality changes the sign at most once at 𝜓𝜓1 ≤ 𝜓𝜓�, so that 
𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

> 0  for all 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓1� 

and 𝜓𝜓1 > 𝜓𝜓0 > 𝜓𝜓, because A2 implies 

𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

=
𝑑𝑑 ln 𝜁𝜁𝜓𝜓
𝑑𝑑 ln𝐿𝐿

+
𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln𝐿𝐿

>
𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln𝐿𝐿

≥ 0 for all 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓0�. 

We now prove 𝜌𝜌 �𝜓𝜓𝑐𝑐
𝐴𝐴
� > 𝔼𝔼𝜋𝜋(𝜎𝜎)−1

𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )−1
 and hence 𝜓𝜓1 < 𝜓𝜓𝑐𝑐 for a sufficiently small 𝐹𝐹 by showing 

lim
𝐹𝐹→0

𝜌𝜌 �
𝜓𝜓𝑐𝑐
𝐴𝐴
� = lim

𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧
𝜌𝜌 �
𝜓𝜓𝑐𝑐
𝐴𝐴
� > lim

𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧
�
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) − 1

�  = lim
𝐹𝐹→0

�
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) − 1

� 

We divide the proof of this inequality into the following three cases.  

Case 1: 0 < lim
𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧

𝜌𝜌 �𝜓𝜓𝑐𝑐
𝐴𝐴
� < 1 and 𝑧𝑧 < ∞. Then, lim

𝜓𝜓 𝐴𝐴⁄ →𝑧𝑧
𝜎𝜎 �𝜓𝜓

𝐴𝐴
� = ∞ ⇒ lim

𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧
� 𝔼𝔼𝜋𝜋(𝜎𝜎)−1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )−1

� = 0. 

 
57We conjecture whether 𝜓𝜓𝑐𝑐 < 𝜓𝜓1 ≤ 𝜓𝜓� and 

𝑑𝑑 ln 𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

> 0 for all 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓𝑐𝑐� for a sufficiently large 𝐹𝐹. 
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Case 2: 0 < lim
𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧

𝜌𝜌 �𝜓𝜓𝑐𝑐
𝐴𝐴
� < 1 and 𝑧𝑧 = ∞. Then, lim

𝜓𝜓 𝐴𝐴⁄ →∞
𝜌𝜌 �𝜓𝜓

𝐴𝐴
� < 1 ⟺ lim

𝑧𝑧→∞
𝑧𝑧𝜁𝜁′(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄
𝜁𝜁(𝑧𝑧)−1

> 0 ⟺

lim
𝑧𝑧→∞

𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) > 0,  so that lim

𝜓𝜓 𝐴𝐴⁄ →∞
𝜎𝜎 �𝜓𝜓

𝐴𝐴
� = lim

𝑧𝑧→∞
ζ(𝑧𝑧) = ζ(𝑧𝑧′) exp �∫ 𝜉𝜉ζ′(𝜉𝜉)

ζ(𝜉𝜉)
𝑑𝑑𝑑𝑑
𝜉𝜉

∞
𝑧𝑧′ � = ∞ ⇒ lim

𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧
� 𝔼𝔼𝜋𝜋(𝜎𝜎)−1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )−1

� =

0. 

Case 3: lim
𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧

𝜌𝜌 �𝜓𝜓𝑐𝑐
𝐴𝐴
� = 1.  Then, lim

𝜓𝜓𝑐𝑐 𝐴𝐴⁄ →𝑧̅𝑧
� 𝔼𝔼𝜋𝜋(𝜎𝜎)−1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )−1

� = lim
𝐹𝐹→0

� 𝔼𝔼𝜋𝜋(𝜎𝜎)−1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )−1

� < 1. 

This completes the proof.  ∎ 

 

C.4. Proof of Proposition 8a, Its Corollary and Proposition 8b 

Propositions 8a: Assume that ℰ𝑔𝑔′ (⋅) does not change its sign and 𝜓𝜓 = 0. Consider a shock, such 
that 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  remains constant. Then, for any weight function, w(𝜓𝜓 𝐴𝐴⁄ ), the weighted generalized 
mean of any monotone 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) > 0,  

𝐼𝐼 ≡ ℳ−1 �𝔼𝔼𝑤𝑤�ℳ(𝑓𝑓)�� 
with a monotone transformation, ℳ:ℝ+ → ℝ, satisfies 

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

� = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓′(⋅)ℰ𝑔𝑔′ (⋅)�. 

Moreover, if ℰ𝑔𝑔′ (⋅) = 0, 𝑑𝑑 ln 𝐼𝐼 𝑑𝑑 ln𝐴𝐴⁄ = 0 for any 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ), monotonic or not. 
Proof:  First, by setting 𝜉𝜉 ≡ 𝜓𝜓 𝐴𝐴⁄ , and 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝑏𝑏 > 0, 

ℳ(𝐼𝐼) ≡ 𝔼𝔼𝑤𝑤�ℳ(𝑓𝑓)� =
∫ ℳ�𝑓𝑓(𝜉𝜉)�𝑤𝑤(𝜉𝜉)𝑔𝑔(𝐴𝐴𝐴𝐴)𝑑𝑑𝜉𝜉𝑏𝑏
0

∫ 𝑤𝑤(𝜉𝜉)𝑔𝑔(𝐴𝐴𝜉𝜉)𝑑𝑑𝜉𝜉𝑏𝑏
0

. 

Then, in response to any shock 𝑑𝑑𝑑𝑑 𝐴𝐴⁄ = 𝑑𝑑𝜓𝜓𝑐𝑐 𝜓𝜓𝑐𝑐⁄ , which keeps 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝑏𝑏 > 0 constant, 

𝑑𝑑ℳ(𝐼𝐼)
𝑑𝑑 ln𝐴𝐴 

=
∫ ℳ�𝑓𝑓(𝜉𝜉)�ℰ𝑔𝑔(𝜉𝜉𝜉𝜉)𝑤𝑤(𝜉𝜉)𝑔𝑔(𝜉𝜉𝜉𝜉)𝑑𝑑𝜉𝜉𝑏𝑏
0

∫ 𝑤𝑤(𝜉𝜉)𝑔𝑔(𝐴𝐴𝜉𝜉)𝑑𝑑𝜉𝜉𝑏𝑏
0

−ℳ(𝐼𝐼)
∫ ℰ𝑔𝑔(𝜉𝜉𝜉𝜉)𝑤𝑤(𝜉𝜉)𝑔𝑔(𝜉𝜉𝜉𝜉)𝑑𝑑𝜉𝜉𝑏𝑏
0

∫ 𝑤𝑤(𝜉𝜉)𝑔𝑔(𝐴𝐴𝜉𝜉)𝑑𝑑𝜉𝜉𝑏𝑏
0

 

= 𝔼𝔼𝑤𝑤0 �ℳ(𝑓𝑓(𝑥𝑥))ℰ𝑔𝑔(𝑥𝑥𝑥𝑥)� − 𝔼𝔼𝑤𝑤0 �ℳ�𝑓𝑓(𝑥𝑥)��𝔼𝔼𝑤𝑤0 �ℰ𝑔𝑔(𝑥𝑥𝑥𝑥)� = 𝐶𝐶𝐶𝐶𝐶𝐶𝑤𝑤0  �ℰ𝑔𝑔(𝑥𝑥𝑥𝑥),ℳ�𝑓𝑓(𝑥𝑥)��, 

where the expectations and the covariance are taken with respect to the random variable whose 

density function is 

𝑤𝑤0(𝑥𝑥) ≡
𝑤𝑤(𝑥𝑥)𝑔𝑔(𝑥𝑥𝑥𝑥)

∫ 𝑤𝑤(𝜉𝜉)𝑔𝑔(𝜉𝜉𝜉𝜉)𝑑𝑑𝜉𝜉𝑏𝑏
0

. 

Thus,  
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𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴 

=
𝐶𝐶𝐶𝐶𝐶𝐶𝑤𝑤0 �ℰ𝑔𝑔(𝑥𝑥𝑥𝑥),ℳ�𝑓𝑓(𝑥𝑥)��

𝑑𝑑ℳ(𝐼𝐼) 𝑑𝑑 ln 𝐼𝐼⁄ , 

and the proof thus follows from the well-known property of the covariance of monotone 

transformations of a random variable.∎ 

Corollary of Proposition 8a: Assume 𝜓𝜓 = 0, and neither 𝜁𝜁′(⋅) nor ℰ𝑔𝑔′ (⋅) change the signs. 
Consider a shock, such that 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  remains unchanged. Then,  

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

� = 𝑠𝑠𝑠𝑠𝑠𝑠�𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅)�. 

In particular, under 𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅) ≥ 0, a lower 𝐴𝐴 implies, 

𝑑𝑑(𝑋𝑋 𝐿𝐿⁄ )
(𝑋𝑋 𝐿𝐿⁄ ) = −

𝑑𝑑𝑑𝑑
𝑃𝑃
≥ −

𝑑𝑑𝑑𝑑
𝐴𝐴

> 0, 

where the equality holds iff 𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅) = 0. 

Proof:  Relationship between the price aggregator 𝐴𝐴 and the price index 𝑃𝑃: 

ln �
𝐴𝐴
𝑐𝑐𝑐𝑐
� = � ��

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧̅𝑧

𝑧𝑧(𝜔𝜔)
�

Ω
𝑑𝑑𝑑𝑑 = 𝑀𝑀� ��

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧̅𝑧

𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )
�

𝜓𝜓𝑐𝑐

0
𝑑𝑑𝑑𝑑(𝜓𝜓) 

Using the adding-up constraint, 

ln �
𝐴𝐴
𝑐𝑐𝑐𝑐
� =

∫ Φ�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )�𝜓𝜓𝑐𝑐
0 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑(𝜓𝜓)

∫ 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝜓𝜓𝑐𝑐
0 𝑑𝑑𝑑𝑑(𝜓𝜓)

= 𝔼𝔼𝑟𝑟(Φ ∘ 𝑍𝑍) 

where  

Φ(𝑧𝑧) ≡
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧̅𝑧

𝑧𝑧
, 

which satisfies Lemma 1 of Matsuyama and Ushchev (2023) 

 𝜁𝜁′(⋅) ⋛ 0 ⟹Φ′(⋅) ⋚ 0. 

Thus, by applying Proposition 8a for ℳ(𝑓𝑓) = 𝑓𝑓, 𝑓𝑓 = Φ ∘ 𝑍𝑍 and 𝑤𝑤 = 𝑟𝑟,  

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑑𝑑 ln(𝐴𝐴 𝑃𝑃⁄ )
𝑑𝑑 ln𝐴𝐴

ln �
𝐴𝐴
𝑃𝑃
�� = 𝑠𝑠𝑠𝑠𝑠𝑠�Φ′(𝑧𝑧)ℰ𝑔𝑔′ (⋅)� = −𝑠𝑠𝑠𝑠𝑠𝑠�𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅)� 
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Or equivalently,  

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

� = 𝑠𝑠𝑠𝑠𝑠𝑠�𝜁𝜁′(⋅)ℰ𝑔𝑔′ (⋅)�. 

 The proof of the remaining part of Corollary is straightforward, and hence omitted. ∎ 

Proposition 8b. Assume that A2 holds, 𝜓𝜓 = 0, and ℓ(𝜓𝜓 𝐴𝐴⁄ ) is increasing in 𝜓𝜓 𝐴𝐴⁄  for all 𝜓𝜓 𝐴𝐴⁄ ∈

(0,𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ). Consider a shock, which causes a proportional decline in 𝐴𝐴 and 𝜓𝜓𝑐𝑐, so that 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  

remains constant.  Then, if ℰ𝐺𝐺′ (⋅) > 0, the average inverse markup rate = the aggregate labor 

cost share,  
𝔼𝔼1(ℓ)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜇𝜇
� = 1 − �𝔼𝔼𝜋𝜋 �

𝜇𝜇
𝜇𝜇 − 1

��
−1

=
1

𝔼𝔼ℓ(𝜇𝜇), 

decreases and the average inverse price elasticity = the aggregate profit share,   
𝔼𝔼1(𝜋𝜋)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜎𝜎
� =

1
𝔼𝔼𝜋𝜋(𝜎𝜎) = 1 − �𝔼𝔼ℓ �

𝜎𝜎
𝜎𝜎 − 1

��
−1

, 

increases; if ℰ𝐺𝐺′ (⋅) < 0, they move in the opposite direction; and if ℰ𝐺𝐺′ (⋅) = 0, they remain 

constant. 

Proof. Setting 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ , so that 𝜓𝜓 𝐴𝐴⁄ = 𝑏𝑏𝑏𝑏,  where 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝑏𝑏 > 0, a constant. Then, 

𝔼𝔼1(𝑟𝑟)
𝔼𝔼1(ℓ) =

∫ 𝑟𝑟(𝑏𝑏𝑏𝑏)𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)1
0

∫ ℓ(𝑏𝑏𝑏𝑏)𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)1
0

. 

Since 𝑟𝑟′(⋅) < 0 < ℓ′(⋅), ℰ𝐺𝐺′ (⋅) < 0(> 0) implies from Lemma 2 that the numerator increases 

(decreases) and the denominator decreases (increases) in response to a lower 𝜓𝜓𝑐𝑐. This completes 

the proof. ∎ 

 

C.5. Proof of Propositions 9a, 9b, 9c, and 9d 

To prove Proposition 9, we will need two lemmas. 

Lemma 9. Any shock shifting 𝜓𝜓𝑐𝑐 and 𝐴𝐴 in the same direction shifts 𝑀𝑀 in the opposite direction. 

 

Proof.  This follows from the RHS of  

𝑀𝑀 = �� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
�
−1
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being strictly decreasing both in  𝜓𝜓𝑐𝑐 and 𝐴𝐴.  This completes the proof. ∎ 

 

To formulate another lemma, recall first that, from the adding up constraint, 

1
𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) = 𝒥𝒥 �

𝜓𝜓𝑐𝑐
𝐴𝐴

,𝜓𝜓𝑐𝑐� ≡ � 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
𝜉𝜉�
𝑑𝑑𝑑𝑑(𝜓𝜓𝑐𝑐𝜉𝜉)
𝐺𝐺(𝜓𝜓𝑐𝑐)

1

𝜉𝜉
≡ � 𝑟𝑟 �

𝜓𝜓𝑐𝑐
𝐴𝐴
𝜉𝜉� 𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)

1

𝜉𝜉
. 

Using integration by parts, 

1
𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) = 𝒥𝒥 �

𝜓𝜓𝑐𝑐
𝐴𝐴

,𝜓𝜓𝑐𝑐� = 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
𝜉𝜉�𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)�

𝜉𝜉=𝜉𝜉

𝜉𝜉=1

−
𝜓𝜓𝑐𝑐
𝐴𝐴
� 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)𝑟𝑟′ �

𝜓𝜓𝑐𝑐
𝐴𝐴
𝜉𝜉� 𝑑𝑑𝑑𝑑

1

𝜉𝜉

= 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
� −

𝜓𝜓𝑐𝑐
𝐴𝐴
� 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)𝑟𝑟′ �

𝜓𝜓𝑐𝑐
𝐴𝐴
𝜉𝜉� 𝑑𝑑𝑑𝑑

1

𝜉𝜉
. 

Lemma 10: 
a): 𝜕𝜕𝒥𝒥(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ,,𝜓𝜓𝑐𝑐)

𝜕𝜕(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) < 0; 

b): ℰ𝐺𝐺′ (𝜓𝜓) ⋛ 0, ∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹ 𝜕𝜕𝒥𝒥(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ,,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

⋚ 0. 
Proof. 

a): This follows from 

𝒥𝒥 �
𝜓𝜓𝑐𝑐
𝐴𝐴

,𝜓𝜓𝑐𝑐� ≡ � 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
𝜉𝜉� 𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)

1

𝜉𝜉
, 

and 𝑟𝑟 �𝜓𝜓𝑐𝑐
𝐴𝐴
𝜉𝜉� is strictly decreasing in 𝜓𝜓𝑐𝑐

𝐴𝐴
. 

b):   Since 𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐) = 𝑟𝑟(𝑎𝑎) − 𝑎𝑎∫ 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)𝑟𝑟′(𝑎𝑎𝜉𝜉)𝑑𝑑𝑑𝑑1
𝜉𝜉 , by setting 𝑎𝑎 = 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ , 

𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

= −𝑎𝑎�
𝜕𝜕𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

𝑟𝑟′(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑
1

𝜉𝜉
 

Thus, from 𝑟𝑟′(∙) < 0 and Lemma 2,   

ℰ𝐺𝐺′ (𝜓𝜓) ⋛ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝜕𝜕𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

⋚ 0,∀𝜉𝜉 ∈ (𝜉𝜉, 1)  ⟹
𝜕𝜕𝒥𝒥 �𝜓𝜓𝑐𝑐𝐴𝐴 ,𝜓𝜓𝑐𝑐�

𝜕𝜕𝜓𝜓𝑐𝑐
⋚ 0. 

 

Proposition 9a (The Effects of 𝐹𝐹𝑒𝑒 on 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝐹𝐹𝑒𝑒

< 0;       ℰ𝐺𝐺′ (𝜓𝜓) ⋛ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝐹𝐹𝑒𝑒
⋛ 0 



Page 68 of 78 
 

Proof of Proposition 9a 

We first prove the effect of 𝐹𝐹𝑒𝑒 on 𝑀𝑀. From Corollary 6a of Proposition 6, 𝑑𝑑𝜓𝜓𝑐𝑐 𝑑𝑑𝐹𝐹𝑒𝑒⁄ > 0 and 
𝑑𝑑𝑑𝑑 𝑑𝑑𝐹𝐹𝑒𝑒⁄ > 0. Therefore, from Lemma 9, 𝑑𝑑𝑑𝑑 𝑑𝑑𝐹𝐹𝑒𝑒⁄ < 0. 

We now prove the effect of 𝐹𝐹𝑒𝑒 on 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐). From Corollary 6a of Proposition 6, 𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑𝐹𝐹𝑒𝑒

= 0 and 
𝑑𝑑𝜓𝜓𝑐𝑐
𝑑𝑑𝐹𝐹𝑒𝑒

> 0, and Lemma 10b, ℰ𝐺𝐺′ (𝜓𝜓) ⋛ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� implies 

𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜕𝜕

𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑𝐹𝐹𝑒𝑒

+
𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

𝑑𝑑𝜓𝜓𝑐𝑐
𝑑𝑑𝐹𝐹𝑒𝑒

=
𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

𝑑𝑑𝜓𝜓𝑐𝑐
𝑑𝑑𝐹𝐹𝑒𝑒

⋚ 0 ⟺
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝐹𝐹𝑒𝑒
⋛ 0 

This completes the proof. ∎ 

Proposition 9b (The Effects of 𝐿𝐿 on 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)): Under A2, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0;       ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝑑𝑑
> 0. 

Proof of Proposition 9b 

We first prove the effect of 𝐿𝐿 on 𝑀𝑀. By Corollary 6b of Proposition 6, 𝑑𝑑𝜓𝜓𝑐𝑐 𝑑𝑑𝑑𝑑⁄ < 0 under A2, 
and 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ < 0. Therefore, from Lemma 9, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ > 0. 

We now prove the effect of 𝐿𝐿 on 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐). From Lemma 10a and applying Lemma 10b for 
 ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓�, 

𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜕𝜕

< 0; 
𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

≥ 0. 

From Corollary 6b of Proposition 6, 𝑑𝑑𝜓𝜓𝑐𝑐 𝑑𝑑𝑑𝑑⁄ < 0 under A2, and  𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 𝑑𝑑𝑑𝑑⁄ > 0. Hence, 

ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)

𝜕𝜕𝜕𝜕
𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝑑𝑑𝑑𝑑
+
𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

𝑑𝑑𝜓𝜓𝑐𝑐
𝑑𝑑𝑑𝑑

< 0 ⟹
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝑑𝑑
> 0. 

This completes the proof. ∎ 

Proposition 9c (The Effects of 𝐿𝐿 on 𝑀𝑀 𝐿𝐿⁄ ,  𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) 𝐿𝐿⁄ ): Under A2, 

𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
⟹

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑀𝑀
𝐿𝐿
� > 0; ℰ𝐺𝐺′ (𝜓𝜓) ≥ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)

𝐿𝐿
� < 0. 

Proof of Proposition 9c 

We first prove the effect of 𝐿𝐿 on 𝑀𝑀 𝐿𝐿⁄ . From the adding up constraint, 

1
𝑀𝑀

= � 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
⟹

𝐿𝐿
𝑀𝑀

= � 𝑅𝑅𝜓𝜓𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
, 
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hence, 

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝐿𝐿
𝑀𝑀
� = 𝑅𝑅𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

𝑑𝑑𝜓𝜓𝑐𝑐
𝑑𝑑𝑑𝑑

+ �
𝑑𝑑𝑅𝑅𝜓𝜓
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓

= 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐) �

𝑑𝑑𝜓𝜓𝑐𝑐 𝜓𝜓𝑐𝑐⁄
𝑑𝑑𝑑𝑑 𝐿𝐿⁄

� + � �
𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln 𝐿𝐿

� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

= 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐) �

𝑑𝑑𝜓𝜓𝑐𝑐 𝜓𝜓𝑐𝑐⁄
𝑑𝑑𝑑𝑑 𝐿𝐿⁄

� + � 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
+ �

𝑑𝑑 ln 𝑟𝑟 �𝜓𝜓𝐴𝐴�
𝑑𝑑 ln 𝐿𝐿

𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

= 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐) �

𝑑𝑑𝜓𝜓𝑐𝑐 𝜓𝜓𝑐𝑐⁄
𝑑𝑑𝑑𝑑 𝐿𝐿⁄

� + � 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
− �

𝑑𝑑𝑑𝑑 𝐴𝐴⁄
𝑑𝑑𝑑𝑑 𝐿𝐿⁄

��
𝑑𝑑 ln 𝑟𝑟 �𝜓𝜓𝐴𝐴�

𝑑𝑑 ln �𝜓𝜓𝐴𝐴�
𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

= 𝑟𝑟 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐) �

𝑑𝑑𝜓𝜓𝑐𝑐 𝜓𝜓𝑐𝑐⁄
𝑑𝑑𝑑𝑑 𝐿𝐿⁄

� + � 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
− �

𝑑𝑑𝑑𝑑 𝐴𝐴⁄
𝑑𝑑𝑑𝑑 𝐿𝐿⁄

�� 𝑟𝑟′ �
𝜓𝜓
𝐴𝐴
�
𝜓𝜓
𝐴𝐴
𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
. 

Multiplying by [𝔼𝔼𝜋𝜋(𝜎𝜎) − 1] ∫ 𝑟𝑟 �𝜓𝜓
𝐴𝐴
� 𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓�  and using the expressions for 𝑑𝑑𝜓𝜓𝑐𝑐 𝜓𝜓𝑐𝑐⁄  and 𝑑𝑑𝑑𝑑 𝐴𝐴⁄  

from Proposition 6 can verify that the sufficient and necessary conditions are: 

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝐿𝐿
𝑀𝑀
� ⋛ 0 ⟺ 

�
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

𝜎𝜎 �𝜓𝜓𝑐𝑐𝐴𝐴 � − 1
�
𝑟𝑟 �𝜓𝜓𝑐𝑐𝐴𝐴 �𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

+ 𝔼𝔼𝜋𝜋(𝜎𝜎) − 1 +
∫ 𝑟𝑟′ �𝜓𝜓𝐴𝐴�

𝜓𝜓
𝐴𝐴 𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓 − 𝑟𝑟 �𝜓𝜓𝑐𝑐𝐴𝐴 �𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

⋛ 0. 

Under lim
𝜓𝜓→𝜓𝜓

𝜓𝜓𝜓𝜓(𝜓𝜓) = 0, which holds for 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
, 

� 𝑟𝑟′ �
𝜓𝜓
𝐴𝐴
�
𝜓𝜓
𝐴𝐴
𝑔𝑔(𝜓𝜓)𝑑𝑑𝑑𝑑

𝜓𝜓𝑐𝑐

𝜓𝜓
= 𝑟𝑟 �

𝜓𝜓𝑐𝑐
𝐴𝐴
�𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐) −� 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
; 

𝔼𝔼𝜋𝜋(𝜎𝜎) − 1 =
∫ �𝜎𝜎 �𝜓𝜓𝐴𝐴� − 1� 𝜋𝜋 �𝜓𝜓𝐴𝐴� 𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

= −
∫ 𝜋𝜋′ �𝜓𝜓𝐴𝐴�

𝜓𝜓
𝐴𝐴 𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

=
∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓 − 𝜋𝜋 �𝜓𝜓𝑐𝑐𝐴𝐴 �𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

. 

Using these expressions to rewrite the 2nd & 3rd terms in the sufficient & necessary condition,  
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�
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

𝜎𝜎 �𝜓𝜓𝑐𝑐𝐴𝐴 � − 1
�
𝑟𝑟 �𝜓𝜓𝑐𝑐𝐴𝐴 �𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

+
∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓 − 𝜋𝜋 �𝜓𝜓𝑐𝑐𝐴𝐴 �𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

−
∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

⋛ 0. 

⟺ �
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

𝜎𝜎 �𝜓𝜓𝑐𝑐𝐴𝐴 � − 1
−
𝜋𝜋 �𝜓𝜓𝑐𝑐𝐴𝐴 �

𝑟𝑟 �𝜓𝜓𝑐𝑐𝐴𝐴 �

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

�
𝑟𝑟 �𝜓𝜓𝑐𝑐𝐴𝐴 �𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

+ �
∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

−
∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

� ⋛ 0. 

⟺ �
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

𝜎𝜎 �𝜓𝜓𝑐𝑐𝐴𝐴 � − 1
−
𝔼𝔼𝜎𝜎 �𝜓𝜓,𝜓𝜓𝑐𝑐�

𝜎𝜎 �𝜓𝜓𝑐𝑐𝐴𝐴 �
�
𝑟𝑟 �𝜓𝜓𝑐𝑐𝐴𝐴 �𝜓𝜓𝑐𝑐𝑔𝑔(𝜓𝜓𝑐𝑐)

∫ 𝑟𝑟 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

+ �
∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

−
∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝜎𝜎 �

𝜓𝜓
𝐴𝐴� �1 + ℰ𝑔𝑔(𝜓𝜓)�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓

∫ 𝜋𝜋 �𝜓𝜓𝐴𝐴�𝜎𝜎 �
𝜓𝜓
𝐴𝐴�𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓

� ⋛ 0. 

Under 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
, ℰ𝑔𝑔(𝜓𝜓) is constant. Hence, the second bracketed term is zero, and the 

sufficient and necessary conditions become: 

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝐿𝐿
𝑀𝑀
� ⋛ 0 ⟺

𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

𝜎𝜎 �𝜓𝜓𝑐𝑐𝐴𝐴 � − 1
⋛
𝔼𝔼𝜋𝜋(𝜎𝜎)

𝜎𝜎 �𝜓𝜓𝑐𝑐𝐴𝐴 �
⟺ 𝔼𝔼𝜋𝜋(𝜎𝜎) ⋛ 𝜎𝜎 �

𝜓𝜓𝑐𝑐
𝐴𝐴
�. 

Under A2, 

𝔼𝔼𝜋𝜋(𝜎𝜎) < 𝜎𝜎 �
𝜓𝜓𝑐𝑐
𝐴𝐴
� ⟹

𝑑𝑑 ln(𝑀𝑀 𝐿𝐿⁄ )
𝑑𝑑 ln 𝐿𝐿

> 0. 

 

We now prove the effect of 𝐿𝐿 on 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐) 𝐿𝐿⁄ . By setting 𝑎𝑎 = 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  in the definition of 
𝒥𝒥(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ,𝜓𝜓𝑐𝑐) and the cutoff rule, 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐿𝐿 = 𝐹𝐹, 

𝐿𝐿
𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)

= 𝐿𝐿𝐿𝐿(𝑎𝑎,𝜓𝜓𝑐𝑐) = 𝐹𝐹
𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜋𝜋(𝑎𝑎) = 𝐹𝐹�

𝑟𝑟(𝑎𝑎𝑎𝑎)
𝜋𝜋(𝑎𝑎)

1

𝜉𝜉
𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐). 

Since both 𝜎𝜎(𝑎𝑎𝑎𝑎) and 𝜋𝜋(𝑎𝑎𝑎𝑎) 𝜋𝜋(𝑎𝑎)⁄  for any 𝜉𝜉 < 1 are increasing in 𝑎𝑎 under A2, so is 
𝑟𝑟(𝑎𝑎𝑎𝑎) 𝜋𝜋(𝑎𝑎)⁄ = 𝜎𝜎(𝑎𝑎𝑎𝑎)𝜋𝜋(𝑎𝑎𝑎𝑎) 𝜋𝜋(𝑎𝑎)⁄  for any 𝜉𝜉 < 1. Thus,   

𝜕𝜕𝜕𝜕𝜕𝜕(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜕𝜕

> 0. 

Furthermore, from Lemma 10b,  

ℰ𝐺𝐺′ (𝜓𝜓) ≥ 0, ∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

≤ 0 

From Corollary 6b of Proposition 6, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 𝑑𝑑𝑑𝑑⁄ > 0, and 𝑑𝑑𝜓𝜓𝑐𝑐 𝑑𝑑𝑑𝑑⁄ < 0 under A2. 
Hence, 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝑑𝑑𝑑𝑑

=  
𝜕𝜕𝜕𝜕𝜕𝜕(𝑎𝑎,𝜓𝜓𝑐𝑐)

𝜕𝜕𝜕𝜕
𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝑑𝑑𝑑𝑑
+
𝜕𝜕𝜕𝜕𝜕𝜕(𝑎𝑎,𝜓𝜓𝑐𝑐)

𝜕𝜕𝜓𝜓𝑐𝑐
𝑑𝑑𝜓𝜓𝑐𝑐
𝑑𝑑𝑑𝑑

> 0 ⟺
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)

𝐿𝐿
� < 0. 

This completes the proof. ∎ 
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Proposition 9d (The Effects of 𝐹𝐹 on 𝑀𝑀 and 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)): If  ℓ′(∙) > 0 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0;      ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝑑𝑑[𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐)]

𝑑𝑑𝑑𝑑
< 0. 

Proof of Proposition 9d 

We first prove the effect of 𝐹𝐹 on 𝑀𝑀. From Corollary 6c of Proposition 6, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ > 0 and 

𝑑𝑑𝜓𝜓𝑐𝑐 𝑑𝑑𝑑𝑑⁄ > 0. Hence, form Lemma 9, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ < 0. 

We now prove the effect of 𝐹𝐹 on 𝑀𝑀𝑀𝑀(𝜓𝜓𝑐𝑐). From Lemma 10a and applying Lemma 10b for 

 ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓�, 

 
𝜕𝜕𝒥𝒥(𝑎𝑎, ,𝜓𝜓𝑐𝑐)

𝜕𝜕𝜕𝜕
< 0; 

𝜕𝜕𝒥𝒥(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

≥ 0. 

By Corollary 6c of Proposition 6, 𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 𝑑𝑑𝑑𝑑⁄ < 0 < 𝑑𝑑𝜓𝜓𝑐𝑐 𝑑𝑑𝑑𝑑⁄ . Hence, 

 ℰ𝐺𝐺′ (𝜓𝜓) ≤ 0,∀𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓� ⟹
𝑑𝑑𝑑𝑑(𝑎𝑎,𝜓𝜓𝑐𝑐)

𝑑𝑑𝑑𝑑
=
𝜕𝜕𝒥𝒥(𝑎𝑎, ,𝜓𝜓𝑐𝑐)

𝜕𝜕𝜕𝜕
𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑𝑑𝑑

+
𝜕𝜕𝒥𝒥(𝑎𝑎,𝜓𝜓𝑐𝑐)
𝜕𝜕𝜓𝜓𝑐𝑐

𝑑𝑑𝜓𝜓𝑐𝑐
𝑑𝑑𝑑𝑑

> 0

⟹
𝑑𝑑𝑑𝑑𝑑𝑑(𝜓𝜓𝑐𝑐)

𝑑𝑑𝑑𝑑
< 0. 

This completes the proof. ∎ 

 
C.6. Proof of Propositions 11a and 11b 

To prove Proposition 11, we will need the following lemma. 
Lemma 11:  Suppose 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �

𝜅𝜅
. Then, the equilibrium conditions can be stated as 

� 𝑟𝑟�𝑏𝑏𝑗𝑗𝜉𝜉�𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑
1

𝑎𝑎𝑗𝑗
= 𝑎𝑎𝑗𝑗+1−𝜅𝜅 � 𝑟𝑟�𝑏𝑏𝑗𝑗+1𝜉𝜉 �𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑

1

𝑎𝑎𝑗𝑗+1
;  𝑎𝑎0 = 0 

𝐿𝐿𝑗𝑗𝜋𝜋�𝑏𝑏𝑗𝑗� = 𝐿𝐿𝑗𝑗+1𝜋𝜋�𝑎𝑎𝑗𝑗𝑏𝑏𝑗𝑗+1�;   𝐿𝐿𝐽𝐽𝜋𝜋�𝑏𝑏𝐽𝐽� = 𝐹𝐹. 

��𝑎𝑎2 …𝑎𝑎𝑗𝑗−1�
−𝜅𝜅
� �𝐿𝐿𝑗𝑗𝜋𝜋�𝑏𝑏𝑗𝑗𝜉𝜉� − 𝐹𝐹�𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑
1

𝑎𝑎𝑗𝑗−1

𝐽𝐽

𝑗𝑗=1

= �
𝜓𝜓
𝜓𝜓1
�
𝜅𝜅
𝐹𝐹𝑒𝑒
𝜅𝜅

, 

where 𝑎𝑎𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄  and 𝑏𝑏𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ . 

 
Proof:. First, from the adding-up constraints,  

� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴𝑗𝑗
�𝜓𝜓𝜅𝜅−1𝑑𝑑𝑑𝑑

𝜓𝜓𝑗𝑗

𝜓𝜓𝑗𝑗−1
= � 𝑟𝑟 �

𝜓𝜓
𝐴𝐴𝑗𝑗+1

�𝜓𝜓𝜅𝜅−1𝑑𝑑𝑑𝑑
𝜓𝜓𝑗𝑗+1

𝜓𝜓𝑗𝑗
. 



Page 72 of 78 
 

for 𝑗𝑗 = 1,2, … , 𝐽𝐽 − 1.  By setting 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑗𝑗⁄  in the LHS and 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑗𝑗+1⁄  in the RHS, this can be 

written as: 

� 𝑟𝑟 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
𝜉𝜉� 𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑

1

𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄
= �

𝜓𝜓𝑗𝑗
𝜓𝜓𝑗𝑗+1

�
−𝜅𝜅

� 𝑟𝑟 �
𝜓𝜓𝑗𝑗+1
𝐴𝐴𝑗𝑗+1

𝜉𝜉 � 𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑.
1

𝜓𝜓𝑗𝑗 𝜓𝜓𝑗𝑗+1⁄
 

Second, the cutoff conditions for 𝑗𝑗 = 1,2, … , 𝐽𝐽 − 1 can rewritten as: 

𝐿𝐿𝑗𝑗𝜋𝜋 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
� = 𝐿𝐿𝑗𝑗+1𝜋𝜋 �

𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗+1

� ; 

and 

𝐿𝐿𝐽𝐽𝜋𝜋 �
𝜓𝜓𝐽𝐽
𝐴𝐴𝐽𝐽
� = 𝐹𝐹. 

Third, the free-entry condition can be written as 

��
𝜓𝜓𝑗𝑗
𝜓𝜓1
�
𝜅𝜅

� �𝐿𝐿𝑗𝑗𝜋𝜋 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
𝜉𝜉� − 𝐹𝐹� 𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑

1

𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄

𝐽𝐽

𝑗𝑗=1

= �
𝜓𝜓
𝜓𝜓1
�
𝜅𝜅
𝐹𝐹𝑒𝑒
𝜅𝜅

. 

Using 𝑎𝑎𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄ < 1 and 𝑏𝑏𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄  for 𝑗𝑗 = 1,2 … , 𝐽𝐽, the three conditions can be written 

as: 

� 𝑟𝑟�𝑏𝑏𝑗𝑗𝜉𝜉�𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑
1

𝑎𝑎𝑗𝑗
= 𝑎𝑎𝑗𝑗+1−𝜅𝜅 � 𝑟𝑟�𝑏𝑏𝑗𝑗+1𝜉𝜉 �𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑

1

𝑎𝑎𝑗𝑗+1
;  𝑎𝑎0 = 0 

𝐿𝐿𝑗𝑗𝜋𝜋�𝑏𝑏𝑗𝑗� = 𝐿𝐿𝑗𝑗+1𝜋𝜋�𝑎𝑎𝑗𝑗𝑏𝑏𝑗𝑗+1�;   𝐿𝐿𝐽𝐽𝜋𝜋�𝑏𝑏𝐽𝐽� = 𝐹𝐹. 

��𝑎𝑎2 …𝑎𝑎𝑗𝑗−1�
−𝜅𝜅
� �𝐿𝐿𝑗𝑗𝜋𝜋�𝑏𝑏𝑗𝑗𝜉𝜉� − 𝐹𝐹�𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑
1

𝑎𝑎𝑗𝑗−1

𝐽𝐽

𝑗𝑗=1

= �
𝜓𝜓
𝜓𝜓1
�
𝜅𝜅
𝐹𝐹𝑒𝑒
𝜅𝜅

. 

This completes the proof. ∎ 
Proposition 11a: Suppose A2 and 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �

𝜅𝜅
.  There exists a sequence, 𝐿𝐿1 > 𝐿𝐿2 > ⋯ >

𝐿𝐿𝐽𝐽 > 0, such that, in equilibrium, any weighted generalized mean of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � across firms 

operating at market-𝑗𝑗 are increasing (decreasing) in 𝑗𝑗 even though 𝑓𝑓(⋅) is increasing 

(decreasing) and hence 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � is decreasing (increasing) in 𝑗𝑗. 

Proof:  First, consider an equilibrium along which   

𝑏𝑏𝑗𝑗 = 𝑏𝑏 = 𝜋𝜋−1 �
𝐹𝐹
𝐿𝐿𝐽𝐽
� 

is constant. Then, the first condition implies that 𝑎𝑎𝑗𝑗 solves the following difference equation, 

𝑎𝑎𝑗𝑗+1 = 𝐷𝐷�𝑎𝑎𝑗𝑗�, defined by: 
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� 𝑟𝑟(𝑏𝑏𝑏𝑏)𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑
1

𝑎𝑎𝑗𝑗
≡ 𝑎𝑎𝑗𝑗+1−𝜅𝜅 � 𝑟𝑟(𝑏𝑏𝑏𝑏 )𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑

1

𝑎𝑎𝑗𝑗+1
. 

with the initial condition, 𝑎𝑎0 = 0.  The LHS is strictly positive and strictly decreasing in 0 <

𝑎𝑎𝑗𝑗 < 1 and goes to zero as 𝑎𝑎𝑗𝑗 → 1, while the RHS is positive and strictly decreasing in 0 <

𝑎𝑎𝑗𝑗+1 < 1 and goes to infinity as 𝑎𝑎𝑗𝑗+1 → 0 and goes to zero as 𝑎𝑎𝑗𝑗+1 → 1. Hence, it has a unique 

solution, 𝑎𝑎𝑗𝑗+1 = 𝐷𝐷�𝑎𝑎𝑗𝑗�, which satisfies, for 0 ≤ 𝑎𝑎𝑗𝑗 < 1,𝑎𝑎𝑗𝑗 < 𝐷𝐷�𝑎𝑎𝑗𝑗� = 𝑎𝑎𝑗𝑗+1 < 1.  Thus, 0 =

𝑎𝑎0 <  𝑎𝑎1 < ⋯ < 𝑎𝑎𝐽𝐽 < 1.  From A2, the second condition is satisfied with  

𝐿𝐿𝑗𝑗
𝐿𝐿𝑗𝑗+1

=
𝜋𝜋�𝑎𝑎𝑗𝑗𝑏𝑏�
𝜋𝜋(𝑏𝑏) > 1. 

Furthermore, 𝑎𝑎𝑗𝑗  is monotone increasing in 𝑗𝑗 implies that any weighted generalized mean of 

𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � = 𝑓𝑓�𝑏𝑏𝜓𝜓 𝜓𝜓𝑗𝑗⁄ �, 

ℳ−1 �
∫ ℳ�𝑓𝑓(𝑏𝑏𝑏𝑏)�𝑤𝑤(𝑏𝑏𝑏𝑏)𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑1
𝑎𝑎𝑗𝑗−1

∫ 𝑤𝑤(𝑏𝑏𝑏𝑏)𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑1
𝑎𝑎𝑗𝑗−1

�, 

is increasing (decreasing) in 𝑗𝑗 if and only if 𝑓𝑓(⋅) is increasing (decreasing).   

This completes the proof. ∎ 

 

Proposition 11b: Suppose 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
.  Then, a change in 𝐹𝐹𝑒𝑒 keeps  

iii) the ratios 𝑎𝑎𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄  and 𝑏𝑏𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄   

and  

iv) any weighted generalized mean of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � across firms operating at market-𝑗𝑗, for any 

weighting function 𝑤𝑤�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �,  

unchanged for all 𝑗𝑗 = 1,2, … , 𝐽𝐽. 

Proof:  

i) The first two equilibrium conditions of Lemma 11 jointly pin down 

�𝑎𝑎0,𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝐽𝐽−1; 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝐽𝐽� and hence the LHS of the third condition pins down the 

RHS.  Thus, for all 𝑗𝑗 = 1,2, … , 𝐽𝐽, 
𝑑𝑑𝜓𝜓𝑗𝑗
𝜓𝜓𝑗𝑗

=
𝑑𝑑𝐴𝐴𝑗𝑗
𝐴𝐴𝑗𝑗

=
1
𝜅𝜅
𝑑𝑑𝐹𝐹𝑒𝑒
𝐹𝐹𝑒𝑒

. 
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ii) Take any firm-specific variable that can be written as a function of 𝜓𝜓 𝐴𝐴⁄ 𝑗𝑗, 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �, for 

firms operating at market-𝑗𝑗, and let 𝑤𝑤�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � > 0 be a weighting function, such as the 

revenue, profit, or employment within market-𝑗𝑗. A weighted generalized mean of 

𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � for market-𝑗𝑗 is given by 

ℳ−1 �
∫ ℳ �𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ ��𝑤𝑤�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑗𝑗
𝜓𝜓𝑗𝑗−1

∫ 𝑤𝑤�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝑑𝑑𝑑𝑑(𝜓𝜓)𝜓𝜓𝑗𝑗
𝜓𝜓𝑗𝑗−1

�. 

Setting 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑗𝑗⁄ , the weighted average of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � across firms operating at market-𝑗𝑗 

becomes: 

ℳ−1

⎝

⎜
⎛∫

ℳ�𝑓𝑓 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
𝜉𝜉��𝑤𝑤 �

𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
𝜉𝜉� 𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑1

𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄

∫ 𝑤𝑤 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
𝜉𝜉� 𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑1

𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄
⎠

⎟
⎞

= ℳ−1 �
∫ ℳ �𝑓𝑓�𝑏𝑏𝑗𝑗𝜉𝜉��𝑤𝑤�𝑏𝑏𝑗𝑗𝜉𝜉�𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑
1
𝑎𝑎𝑗𝑗

∫ 𝑤𝑤�𝑏𝑏𝑗𝑗𝜉𝜉�𝜉𝜉𝜅𝜅−1𝑑𝑑𝑑𝑑
1
𝑎𝑎𝑗𝑗

�, 

where 𝑎𝑎𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄ < 1 and 𝑏𝑏𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ .  Since 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗 remain unchanged in response to a 

change in 𝐹𝐹𝑒𝑒  by part i), any weighted generalized mean of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � also remain unchanged in 

response to a reduction in 𝐹𝐹𝑒𝑒. This completes the proof. ∎ 

 
 

Appendix D:  Three Parametric Families of H.S.A. 

D.1. Generalized Translog: Matsuyama and Ushchev (2020a, 2022).  

For 𝜎𝜎 > 1 and 𝛽𝛽, 𝜂𝜂, 𝛾𝛾 > 0,  

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �1 −
𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝛽𝛽
��

𝜂𝜂

= 𝛾𝛾 �−
𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝑧𝑧̅
��

𝜂𝜂

;  𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1 

⟹ 𝜁𝜁(𝑧𝑧) = 1 +
𝜎𝜎 − 1

1 − 𝜎𝜎 − 1
𝜂𝜂 ln �𝑧𝑧𝛽𝛽�

= 1 −
𝜂𝜂

ln(𝑧𝑧 𝑧𝑧̅⁄ ) > 1, 

which is strictly increasing in 𝑧𝑧 for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅), hence satisfying A2. In contrast,  

𝑧𝑧𝜁𝜁′(𝑧𝑧)
[𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) =

1
𝜂𝜂
�1 −

1
𝜁𝜁(𝑧𝑧)� =

1
𝜂𝜂 − ln(𝑧𝑧 𝑧𝑧̅⁄ ) 
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is strictly increasing in 𝑧𝑧 for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅).  Thus, the weak A3 is violated.58 

Notes:  

• CES is the limit case, as 𝜂𝜂 → ∞, while holding 𝛽𝛽 > 0 and  𝜎𝜎 > 1 fixed.  

𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1 → ∞ 

𝜁𝜁(𝑧𝑧) = 1 +
𝜎𝜎 − 1

1 − 𝜎𝜎 − 1
𝜂𝜂 ln �𝑧𝑧𝛽𝛽�

→ 𝜎𝜎;   𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �1 −
𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝛽𝛽
��

𝜂𝜂

→ 𝛾𝛾 �
𝑧𝑧
𝛽𝛽
�
1−𝜎𝜎

; 

• Translog is the special case where 𝜂𝜂 = 1. 

• 𝑧𝑧 = 𝑍𝑍 �𝜓𝜓
𝐴𝐴
� is given as the inverse of 𝜂𝜂𝑧𝑧

𝜂𝜂−ln(𝑧𝑧 𝑧̅𝑧⁄ ) = 𝜓𝜓
𝐴𝐴

; 

• If 𝜂𝜂 ≥ 1, 𝑧𝑧𝜁𝜁
′(𝑧𝑧)

𝜁𝜁(𝑧𝑧) < 𝜂𝜂𝑧𝑧𝜁𝜁′(𝑧𝑧) = [𝜁𝜁(𝑧𝑧) − 1]2; and employment is globally decreasing in 𝑧𝑧;  

• If 𝜂𝜂 < 1, employment is hump-shaped with the peak, given by 𝜂𝜂𝜂𝜂(𝑧̂𝑧) = 1 ⟺ 𝑧̂𝑧 𝑧𝑧̅⁄ =
𝜓𝜓�

(1−𝜂𝜂)𝑧̅𝑧𝐴𝐴
= exp �− 𝜂𝜂2

1−𝜂𝜂
� < 1, decreasing in 𝜂𝜂. 

 

D.2. Constant Pass-Through (CoPaTh):  Matsuyama and Ushchev (2020a, 2020b) 

For 0 < 𝜌𝜌 < 1, 𝜎𝜎 > 1, 𝛽𝛽 > 0, and 𝛾𝛾 > 0, 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �𝜎𝜎 − (𝜎𝜎 − 1) �
𝑧𝑧
𝛽𝛽
�
1−𝜌𝜌
𝜌𝜌
�

𝜌𝜌
1−𝜌𝜌

= 𝛾𝛾𝜎𝜎
𝜌𝜌

1−𝜌𝜌 �1 − �
𝑧𝑧
𝑧𝑧̅
�
1−𝜌𝜌
𝜌𝜌 �

𝜌𝜌
1−𝜌𝜌

for 𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽 �
𝜎𝜎

𝜎𝜎 − 1
�

𝜌𝜌
1−𝜌𝜌 

⟹ 1 −
1

𝜁𝜁(𝑧𝑧) = �
𝑧𝑧
𝑧𝑧̅
�
1−𝜌𝜌
𝜌𝜌 < 1  for 𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽 �

𝜎𝜎
𝜎𝜎 − 1

�
𝜌𝜌

1−𝜌𝜌 

⟹ ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) = −ℰ𝜁𝜁 (𝜁𝜁−1)⁄ (𝑧𝑧) =
1 − 𝜌𝜌
𝜌𝜌

> 0. 

satisfying A2 and the weak form of A3 (but not the strong form).  

Note:  CES is the limit case, as 𝜌𝜌 → 1, while holding 𝛽𝛽 > 0 and 𝜎𝜎 > 1 fixed: 

 
58 Indeed, any H.S.A. satisfying A2 and lim

𝑧𝑧→0
𝑠𝑠(𝑧𝑧) = ∞ violates the weak A3. To see this, under A2, 1 ≤ 𝜁𝜁(0) <

𝜁𝜁(𝑧𝑧) < ∞ for any 𝑧𝑧̅ > 𝑧𝑧0 > 𝑧𝑧 > 0, hence, 0 < ∫ 𝜁𝜁′(𝜉𝜉)
𝜁𝜁(𝜉𝜉)

𝑧𝑧0
𝑧𝑧 𝑑𝑑𝑑𝑑 = ln 𝜁𝜁(𝑧𝑧0) − ln 𝜁𝜁(𝑧𝑧) < ∞. Moreover, under the weak 

A3, 𝜃𝜃(𝑧𝑧) ≡ 𝑧𝑧𝜁𝜁′(𝑧𝑧)
[𝜁𝜁(𝑧𝑧)−1]𝜁𝜁(𝑧𝑧)

> 0 is non-increasing because 𝜃𝜃�𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ )� = 1
𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )

− 1.  Thus, ln 𝑠𝑠(𝑧𝑧) − ln 𝑠𝑠(𝑧𝑧0) =

∫ 𝜁𝜁(𝜉𝜉)−1
𝜉𝜉

𝑧𝑧0
𝑧𝑧 𝑑𝑑𝑑𝑑 = ∫ 1

𝜃𝜃(𝜉𝜉)
𝑧𝑧0
𝑧𝑧

𝜁𝜁′(𝜉𝜉)
𝜁𝜁(𝜉𝜉)

𝑑𝑑𝑑𝑑 ≤ 1
𝜃𝜃(𝑧𝑧0)∫

𝜁𝜁′(𝜉𝜉)
𝜁𝜁(𝜉𝜉)

𝑑𝑑𝑑𝑑𝑧𝑧0
𝑧𝑧 , from which lim

𝑧𝑧→0
𝑠𝑠(𝑧𝑧) ≤ ln 𝑠𝑠(𝑧𝑧0) + 1

𝜃𝜃(𝑧𝑧0)∫
𝜁𝜁′(𝜉𝜉)
𝜁𝜁(𝜉𝜉)

𝑑𝑑𝑑𝑑𝑧𝑧0
0 < ∞. 
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𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽 �
𝜎𝜎

𝜎𝜎 − 1
�

𝜌𝜌
1−𝜌𝜌 → ∞;      

𝜁𝜁(𝑧𝑧) =
𝜎𝜎

𝜎𝜎 − (𝜎𝜎 − 1) �𝑧𝑧𝛽𝛽�
1−𝜌𝜌
𝜌𝜌

→ 𝜎𝜎; 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �𝜎𝜎 − (𝜎𝜎 − 1) �
𝑧𝑧
𝛽𝛽
�
1−𝜌𝜌
𝜌𝜌
�

𝜌𝜌
1−𝜌𝜌

→ 𝛾𝛾 �
𝑧𝑧
𝛽𝛽
�
1−𝜎𝜎

; 

because, by applying l’Hôpital’s rule for ∆ = 1−𝜌𝜌
𝜌𝜌

, 

lim
𝜌𝜌↗1

ln
𝑠𝑠(𝑧𝑧)
𝛾𝛾

= lim
∆↘0

ln �𝜎𝜎 − (𝜎𝜎 − 1) �𝑧𝑧𝛽𝛽�
∆
�

∆
= lim

∆↘0

(1 − 𝜎𝜎) �𝑧𝑧𝛽𝛽�
∆

ln �𝑧𝑧𝛽𝛽�

𝜎𝜎 − (𝜎𝜎 − 1) �𝑧𝑧𝛽𝛽�
∆ = (1 − 𝜎𝜎) ln �

𝑧𝑧
𝛽𝛽
�. 

Monopoly Pricing:  From the firm’s FOC:   

𝑧𝑧𝜓𝜓 �1 −
1

𝜁𝜁�𝑧𝑧𝜓𝜓�
� =

𝜓𝜓
𝐴𝐴

. 

𝑧𝑧𝜓𝜓 ≡ 𝑍𝑍 �
𝜓𝜓
𝐴𝐴
� = (𝑧𝑧̅)1−𝜌𝜌 �

𝜓𝜓
𝐴𝐴
�
𝜌𝜌

 

which features a constant (incomplete) pass-through rate, 0 < 𝜌𝜌 < 1.  Hence, the weak form of 

A3 holds, but not the strong form of A3.  Furthermore, 

𝜎𝜎 �
𝜓𝜓
𝐴𝐴
� = 𝜁𝜁 �𝑍𝑍 �

𝜓𝜓
𝐴𝐴
�� =

1

1 − � 𝜓𝜓𝑧𝑧̅𝐴𝐴�
1−𝜌𝜌 =

1

1 − �1 − 1
𝜎𝜎�

𝜌𝜌
� 𝜓𝜓𝛽𝛽𝛽𝛽�

1−𝜌𝜌 > 𝜎𝜎 

increasing in 𝜓𝜓 𝐴𝐴⁄  for 𝜓𝜓 𝐴𝐴⁄ < 𝑧𝑧̅, while 

𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� = 𝑠𝑠 �𝑍𝑍 �

𝜓𝜓
𝐴𝐴
�� =  𝛾𝛾𝜎𝜎

𝜌𝜌
1−𝜌𝜌 �1 − �

𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�

𝜌𝜌
1−𝜌𝜌

=  𝛾𝛾𝜎𝜎
𝜌𝜌

1−𝜌𝜌 �1 − �1 −
1
𝜎𝜎
�
𝜌𝜌

�
𝜓𝜓
𝛽𝛽𝛽𝛽

�
1−𝜌𝜌

�

𝜌𝜌
1−𝜌𝜌

 

𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� =

𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) = 𝛾𝛾𝜎𝜎

𝜌𝜌
1−𝜌𝜌 �1 − �

𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�

1
1−𝜌𝜌

= 𝛾𝛾𝜎𝜎
𝜌𝜌

1−𝜌𝜌 �1 − �1 −
1
𝜎𝜎
�
𝜌𝜌

�
𝜓𝜓
𝛽𝛽𝛽𝛽

�
1−𝜌𝜌

�

1
1−𝜌𝜌

 

are decreasing in 𝜓𝜓 𝐴𝐴⁄  for 𝜓𝜓 𝐴𝐴⁄ < 𝑧𝑧̅.  In contrast, 
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ℓ �
𝜓𝜓
𝐴𝐴
� = 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
� − 𝜋𝜋 �

𝜓𝜓
𝐴𝐴
� = 𝛾𝛾𝜎𝜎

𝜌𝜌
1−𝜌𝜌 �

𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�1 − �
𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�

𝜌𝜌
1−𝜌𝜌

= 𝛾𝛾𝜎𝜎
𝜌𝜌

1−𝜌𝜌 �1 −
1
𝜎𝜎
�
𝜌𝜌

�
𝜓𝜓
𝛽𝛽𝛽𝛽

�
1−𝜌𝜌

�1 − �1 −
1
𝜎𝜎
�
𝜌𝜌

�
𝜓𝜓
𝛽𝛽𝛽𝛽

�
1−𝜌𝜌

�

𝜌𝜌
1−𝜌𝜌

 

increasing in 𝜓𝜓 𝐴𝐴⁄  for 𝜓𝜓 𝐴𝐴⁄ < 𝜓𝜓� 𝐴𝐴⁄ ≡ 𝑧𝑧̅(1 − 𝜌𝜌)
1

1−𝜌𝜌 and decreasing in 𝜓𝜓 𝐴𝐴⁄  for 𝜓𝜓� 𝐴𝐴⁄ < 𝜓𝜓 𝐴𝐴⁄ < 𝑧𝑧̅.  

Equivalently, employment is increasing in 𝑧𝑧 for 𝑧𝑧 < 𝑧̂𝑧 ≡ (𝑧𝑧̅)1−𝜌𝜌�𝜓𝜓� 𝐴𝐴⁄ �
𝜌𝜌

= 𝑧𝑧̅(1 − 𝜌𝜌)
𝜌𝜌

1−𝜌𝜌 and 

decreasing in 𝑧𝑧 for 𝑧̂𝑧 < 𝑧𝑧 < 𝑧𝑧̅.  Note also that  

𝑧̂𝑧 𝑧𝑧̅⁄ = (1 − 𝜌𝜌)
𝜌𝜌

1−𝜌𝜌 > 𝜓𝜓� 𝑧𝑧̅𝐴𝐴⁄ = (1 − 𝜌𝜌)
1

1−𝜌𝜌, 

which is monotonically decreasing in 𝜌𝜌 with 𝑧̂𝑧 𝑧𝑧̅⁄ → 1 and 𝜓𝜓� 𝑧𝑧̅𝐴𝐴⁄ → 1, as 𝜌𝜌 → 0, and 𝑧̂𝑧 𝑧𝑧̅⁄ → 0 

and 𝜓𝜓� 𝑧𝑧̅𝐴𝐴⁄ → 0, as 𝜌𝜌 → 1. 

 

D.3. Power Elasticity of Markup Rate (a.k.a. Fréchet Inverse Markup Rate): For 𝜅𝜅 ≥ 0 
and 𝜆𝜆 > 0 

𝑠𝑠(𝑧𝑧) = exp ��
𝑐𝑐

𝑐𝑐 − exp �− 𝜅𝜅𝑧𝑧̅
−𝜆𝜆

𝜆𝜆 � exp �𝜅𝜅𝜉𝜉
−𝜆𝜆

𝜆𝜆 �

𝑑𝑑𝑑𝑑
𝜉𝜉

𝑧𝑧

𝑧𝑧0
�, 

with either 𝑧𝑧̅ = ∞ and 𝑐𝑐 ≤ 1 or 𝑧𝑧̅ < ∞ and 𝑐𝑐 = 1.  Then,  

1 −
1

𝜁𝜁(𝑧𝑧) = 𝑐𝑐 exp �
𝜅𝜅𝑧𝑧̅−𝜆𝜆

𝜆𝜆
� exp �−

𝜅𝜅𝑧𝑧−𝜆𝜆

𝜆𝜆
� < 1 

⟹ ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) = −ℰ𝜁𝜁 (𝜁𝜁−1)⁄ (𝑧𝑧) = 𝜅𝜅𝑧𝑧−𝜆𝜆; 

satisfying A2 and the strong A3 for 𝜅𝜅 > 0 and 𝜆𝜆 > 0.   

CES for 𝜅𝜅 = 0;  𝑧𝑧̅ = ∞;  𝑐𝑐 = 1 − 1
𝜎𝜎

; CoPaTh for 𝑧𝑧̅ < ∞;  𝑐𝑐 = 1; 𝜅𝜅 = 1−𝜌𝜌
𝜌𝜌

> 0, and 𝜆𝜆 → 0.   

With 𝑧𝑧 = 𝑍𝑍 �𝜓𝜓
𝐴𝐴
� given implicitly by 𝑐𝑐 exp �𝜅𝜅𝑧̅𝑧

−𝜆𝜆

𝜆𝜆
� 𝑧𝑧 exp �− 𝜅𝜅𝑧𝑧−𝜆𝜆

𝜆𝜆
� ≡ 𝜓𝜓

𝐴𝐴
, 

𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� =

1
1 + 𝜅𝜅𝑧𝑧−𝜆𝜆

⟺ ℰ𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� =

𝜆𝜆𝜅𝜅𝜅𝜅−𝜆𝜆

[1 + 𝜅𝜅𝑧𝑧−𝜆𝜆]2 > 0. 

Hence, 

𝜕𝜕2 ln 𝜌𝜌 �𝜓𝜓𝐴𝐴�
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

⋚ 0 ⟺ ℰ𝜌𝜌′ �
𝜓𝜓
𝐴𝐴
� ⋛ 0 ⟺ 𝜅𝜅𝑧𝑧−𝜆𝜆 ⋛ 1 ⟺

𝜓𝜓
𝐴𝐴
⋚ (𝜅𝜅)

1
𝜆𝜆𝑧𝑧𝑧𝑧 exp �

𝜅𝜅𝑧𝑧̅−𝜆𝜆 − 1
𝜆𝜆

�. 
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Thus, the pass-through rate is log-submodular among more efficient firms, while log-

supermodular among less efficient firms. In particular, if 𝑧𝑧̅ < (𝜅𝜅)
1
𝜆𝜆, 𝜕𝜕

2 ln𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

< 0 for all 𝜓𝜓 𝐴𝐴⁄ <

𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) < 𝑧𝑧̅ < ∞. 

 Employment is hump-shaped with the peak at 𝑧̂𝑧 = 𝑍𝑍 �𝜓𝜓
�

𝐴𝐴
�, satisfying 𝑧̂𝑧𝜁𝜁

′(𝑧̂𝑧) 
𝜁𝜁(𝑧̂𝑧) ≡

[𝜁𝜁(𝑧̂𝑧) − 1]2 ⟺ 𝜌𝜌 �𝜓𝜓
�

𝐴𝐴
� 𝜎𝜎 �𝜓𝜓

�

𝐴𝐴
� = 1.   This is given by 

𝑐𝑐 �1 +
𝑧̂𝑧𝜆𝜆

𝜅𝜅
� exp �−

𝜅𝜅𝑧̂𝑧−𝜆𝜆

𝜆𝜆
� exp �

𝜅𝜅𝑧𝑧̅−𝜆𝜆

𝜆𝜆
� = 1 ⟺ �1 +

𝑧̂𝑧𝜆𝜆

𝜅𝜅
� 𝑧̂𝑧 =

𝜓𝜓�
𝐴𝐴

. 
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